HOME
*





Giuseppe Vitali
Giuseppe Vitali (26 August 1875 – 29 February 1932) was an Italian mathematician who worked in several branches of mathematical analysis. He gives his name to several entities in mathematics, most notably the Vitali set with which he was the first to give an example of a non-measurable subset of real numbers. Biography Giuseppe Vitali was the eldest of five children. His father, Domenico Vitali, worked for a railway company in Ravenna while his mother, Zenobia Casadio, was able to stay at home and look after her children. He completed his elementary education in Ravenna in 1886, and then spent three years at the Ginnasio Comunale in Ravenna where his performance in the final examinations of 1889 was average. He continued his secondary education in Ravenna at the Dante Alighieri High School. There his mathematics teacher was Giuseppe Nonni who quickly realised the young Giuseppe had great potential. He wrote to Giuseppe's father, in a letter dated 28 June 1895, asking that he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ravenna
Ravenna ( , , also ; rgn, Ravèna) is the capital city of the Province of Ravenna, in the Emilia-Romagna region of Northern Italy. It was the capital city of the Western Roman Empire from 408 until its collapse in 476. It then served as the capital of the Ostrogothic Kingdom until it was re-conquered in 540 by the Byzantine Empire. Afterwards, the city formed the centre of the Byzantine Exarchate of Ravenna until the last exarch was executed by the Lombards in 751. Although it is an inland city, Ravenna is connected to the Adriatic Sea by the Candiano Canal. It is known for its well-preserved late Roman and Byzantine architecture, with eight buildings comprising the UNESCO World Heritage Site "Early Christian Monuments of Ravenna". History The origin of the name ''Ravenna'' is unclear. Some have speculated that "Ravenna" is related to "Rasenna" (or "Rasna"), the term that the Etruscan civilization, Etruscans used for themselves, but there is no agreement on this point. Ancien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Bologna
The University of Bologna ( it, Alma Mater Studiorum – Università di Bologna, UNIBO) is a public research university in Bologna, Italy. Founded in 1088 by an organised guild of students (''studiorum''), it is the oldest university in continuous operation in the world, and the first degree-awarding institution of higher learning. At its foundation, the word ''universitas'' was first coined.Hunt Janin: "The university in medieval life, 1179–1499", McFarland, 2008, , p. 55f.de Ridder-Symoens, Hilde''A History of the University in Europe: Volume 1, Universities in the Middle Ages'' Cambridge University Press, 1992, , pp. 47–55 With over 90,000 students, it is the second largest university in Italy after La Sapienza in Rome. It was the first place of study to use the term ''universitas'' for the corporations of students and masters, which came to define the institution (especially its law school) located in Bologna. The university's emblem carries the motto, ''Alma Mater Studio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Several Complex Variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables (and analytic space), that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function f:(z_1,z_2, \ldots, z_n) \rightarrow f(z_1,z_2, \ldots, z_n) is -tuples of complex numbers, classically studied on the complex coordinate space \Complex^n. As in complex analysis of functions of one variable, which is the case , the functions studied are ''holomorphic'' or ''complex analytic'' so that, locally, they are power series in the variables . Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the -dimensional Cauchy–Riemann equations. For one complex variable, every domainThat is an open connected subset. (D \subs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meromorphic Functions
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), poles of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Family
In mathematics, with special application to complex analysis, a ''normal family'' is a pre-compact subset of the space of continuous functions. Informally, this means that the functions in the family are not widely spread out, but rather stick together in a somewhat "clustered" manner. Note that a compact family of continuous functions is automatically a normal family. Sometimes, if each function in a normal family ''F'' satisfies a particular property (e.g. is holomorphic), then the property also holds for each limit point of the set ''F''. More formally, let ''X'' and ''Y'' be topological spaces. The set of continuous functions f: X \to Y has a natural topology called the compact-open topology. A normal family is a pre-compact subset with respect to this topology. If ''Y'' is a metric space, then the compact-open topology is equivalent to the topology of compact convergence, and we obtain a definition which is closer to the classical one: A collection ''F'' of continuous func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitrarily small positive number \epsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \epsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then the rate at which f_n(x) approaches f(x) is "uniform" throughout its domain in the following sense: in order to guarantee that f_n(x) falls within a certain distance \epsilon of f(x), we do not need to know the value of x\in E in question — there can be found a single value of N=N(\epsilon) ''independent of x'', such that choosing n\geq N will ensure that f_n(x) is within \epsilon of f(x) ''for all x\in E''. In contrast, pointwise convergence of f_n to f merely guarantees that for any x\in E given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the ''L''1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that : , f_n(x), \le g(x) for all numbers ''n'' in the index set of the sequence and all points x\in S. Then ''f'' is integrable (in the Lebesgue sense) and : \lim_ \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henri Lebesgue
Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis. His theory was published originally in his dissertation ''Intégrale, longueur, aire'' ("Integral, length, area") at the University of Nancy during 1902. Personal life Henri Lebesgue was born on 28 June 1875 in Beauvais, Oise. Lebesgue's father was a typesetter and his mother was a school teacher. His parents assembled at home a library that the young Henri was able to use. His father died of tuberculosis when Lebesgue was still very young and his mother had to support him by herself. As he showed a remarkable talent for mathematics in primary school, one of his instructors arranged for community support to continue his education at the Collège de Beauvais and then at Lycée Saint-Louis and Lycée Louis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vitali Convergence Theorem
In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in ''Lp'' in terms of convergence in measure and a condition related to uniform integrability In mathematics, uniform integrability is an important concept in real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties .... Preliminary definitions Let (X,\mathcal,\mu) be a measure space, i.e. \mu : \mathcal\to ,\infty/math> is a set function such that \mu(\emptyset)=0 and \mu is countably-additive. All functions considered in the sequel will be functions f:X\to \mathbb, where \mathbb=\R or \mathbb. We adopt the following definitions according to Bogachev's terminology. * A set of functions \mathcal \sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Function
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algebra gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]