HOME





Geometry And The Imagination
''Geometry and the Imagination'' is the English translation of the 1932 book by David Hilbert and Stefan Cohn-Vossen. The book was based on a series of lectures Hilbert made in the winter of 1920–21. The book is an attempt to present some then-current mathematical thought to "contribute to a more just appreciation of mathematics by a wider range of people than just the specialists." It differentiates between two tendencies in mathematics and any other scientific research: on the one hand, toward abstraction and logical relations, correlating the subject matter in a systematic and orderly manner, and on the other hand an intuitive approach, which moves toward a more immediate grasp of and a "live rapport" with the same material. Further he asserts that intuitive understanding actually plays a major role for the researcher as well as anyone who wishes to study and appreciate Geometry. Contents Topics covered by the chapters in the book include the Leibniz formula for , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Neményi
Paul Felix Neményi (June 5, 1895March 1, 1952) was a Hungarian mathematician and physicist who specialized in continuum mechanics. He was known for using what he called the inverse or semi-inverse approach, which applied vector field analysis, to obtain numerous exact solutions of the nonlinear equations of gas dynamics, many of them representing rotational flows of nonuniform total energy. His work applied geometrical solutions to fluid dynamics. In continuum mechanics, "Neményi's theorem" proves that, given any net of isothermal curves, there exists a five parameter family of plane stress systems for which these curves are stress trajectories. Neményi's five constant theory for the determination of stress trajectories in plane elastic systems was subsequently proven by later mathematicians. He was the father of the statistician Peter Nemenyi and the putative father of former World Chess Champion Bobby Fischer. Biography Family Neményi was born to a wealthy Hungarian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1952 Non-fiction Books
Year 195 ( CXCV) was a common year starting on Wednesday of the Julian calendar. At the time, it was known in Rome as the Year of the Consulship of Scrapula and Clemens (or, less frequently, year 948 ''Ab urbe condita''). The denomination 195 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years. Events By place Roman Empire * Emperor Septimius Severus has the Roman Senate deify the previous emperor Commodus, in an attempt to gain favor with the family of Marcus Aurelius. * King Vologases V and other eastern princes support the claims of Pescennius Niger. The Roman province of Mesopotamia rises in revolt with Parthian support. Severus marches to Mesopotamia to battle the Parthians. * The Roman province of Syria is divided and the role of Antioch is diminished. The Romans annex the Syrian cities of Edessa and Nisibis. Severus re-establishes his headquarters and the colonies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internet Archive
The Internet Archive is an American 501(c)(3) organization, non-profit organization founded in 1996 by Brewster Kahle that runs a digital library website, archive.org. It provides free access to collections of digitized media including websites, Application software, software applications, music, audiovisual, and print materials. The Archive also advocates a Information wants to be free, free and open Internet. Its mission is committing to provide "universal access to all knowledge". The Internet Archive allows the public to upload and download digital material to its data cluster, but the bulk of its data is collected automatically by its web crawlers, which work to preserve as much of the public web as possible. Its web archiving, web archive, the Wayback Machine, contains hundreds of billions of web captures. The Archive also oversees numerous Internet Archive#Book collections, book digitization projects, collectively one of the world's largest book digitization efforts. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Scientific Monthly
''The Scientific Monthly'' was a science magazine published from 1915 to 1957. Psychologist James McKeen Cattell, the former publisher and editor of '' The Popular Science Monthly'', was the original founder and editor. In 1958, ''The Scientific Monthly'' was absorbed by ''Science''. References External links Archived The Scientific Monthlyon the Internet Archive The Internet Archive is an American 501(c)(3) organization, non-profit organization founded in 1996 by Brewster Kahle that runs a digital library website, archive.org. It provides free access to collections of digitized media including web ... * Hathi Trust records - https://catalog.hathitrust.org/Record/000519252 American Association for the Advancement of Science academic journals Monthly magazines published in the United States Science and technology magazines published in the United States Defunct magazines published in the United States Magazines established in 1915 Magazines disestablished in 195 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Physics Today
''Physics Today'' is the membership magazine of the American Institute of Physics. First published in May 1948, it is issued on a monthly schedule, and is provided to the members of ten physics societies, including the American Physical Society. It is also available to non-members as a paid annual subscription. The magazine informs readers about important developments in overview articles written by experts, shorter review articles written internally by staff, and also discusses issues and events of importance to the science community in politics, education, and other fields. The magazine provides a historical resource of events associated with physics. For example it discussed debunking the physics of the Star Wars program of the 1980s, and the state of physics in China and the Soviet Union during the 1950s and 1970s. According to the ''Journal Citation Reports'', the journal has a 2017 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic jou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Association Of America
The Mathematical Association of America (MAA) is a professional society that focuses on mathematics accessible at the undergraduate level. Members include university A university () is an educational institution, institution of tertiary education and research which awards academic degrees in several Discipline (academia), academic disciplines. ''University'' is derived from the Latin phrase , which roughly ..., college, and high school teachers; graduate and undergraduate students; pure and applied mathematicians; computer scientists; statisticians; and many others in academia, government, business, and industry. The MAA was founded in 1915 and is headquartered at 11 Dupont in the Dupont Circle, Washington, D.C., Dupont Circle neighborhood of Washington, D.C. The organization publishes mathematics journals and books, including the ''American Mathematical Monthly'' (established in 1894 by Benjamin Finkel), the most widely read mathematics journal in the world according to re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Four Color Theorem
In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions share a common boundary of non-zero length (i.e., not merely a corner where three or more regions meet). It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubts remain. The theorem is a stronger version of the five color theorem, which can be shown using a significantly simpler argument. Although the weaker five color theorem was proven already in the 1800s, the four color theorem resisted until 1976 when it was proven by Kenneth Appel and Wolfgang Haken in a computer-aided proof. This came after many false proofs and mis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linkage (mechanical)
A mechanical linkage is an assembly of systems connected so as to manage forces and Motion, movement. The movement of a body, or link, is studied using geometry so the link is considered to be Rigid body, rigid. The connections between links are modeled as providing ideal movement, pure rotation or Sliding (motion), sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain. Linkages may be constructed from open chains, closed chains, or a combination of open and closed chains. Each link in a chain is connected by a joint to one or more other links. Thus, a kinematic chain can be modeled as a graph in which the links are paths and the joints are vertices, which is called a linkage graph. The movement of an ideal joint is generally associated with a subgroup of the group of Euclidean geometry, Euclidean displacements. The number of parameters in the subgroup is called the degree of freedom (mecha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chelsea Publishing
The Chelsea Publishing Company was a publisher of mathematical books, based in New York City New York, often called New York City (NYC), is the most populous city in the United States, located at the southern tip of New York State on one of the world's largest natural harbors. The city comprises five boroughs, each coextensive w ..., founded in 1944 by Aaron Galuten while he was still a graduate student at Columbia. Its initial focus was to republish important European works that were unavailable in the United States because of wartime restrictions, such as Hausdorff's Mengenlehre, or because the works were out of print. This soon expanded to include translations of such works into English, as well as original works by American authors. As of 1985, the company's catalog included more than 200 titles. After Galuten's death in 1994, the company was acquired in 1997 by the AMS, which continues to publish a portion of the company's original catalog under the AMS Chelse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Euclidean Geometry
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry. Principles The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point ''A'', which is not on , there is exactly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]