HOME
*





Generalized Maxwell Model
The Generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E WiechertWiechert, E (1889); "Ueber elastische Nachwirkung", Dissertation, Königsberg University, GermanyWiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286issue 10, p. 335–348anissue 11, p. 546–570/ref>) is the most general form of the linear model for viscoelasticity In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearl .... In this model several Maxwell elements are assembled in parallel. It takes into account that the relaxation does not occur at a single time, but in a set of times. Due to the presence of molecular segments of different lengths, with shorter ones contributing less than longer ones, there is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weichert
Weichert is a surname. Notable people with the surname include: * Dieter Weichert (born 1948), German mechanical engineer * Florian Weichert (born 1968), German footballer * Konrad Weichert, German sailor See also

* Wiechert (surname) {{Surname Surnames of German origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism have been called the " second great unification in physics" where the first one had been realised by Isaac Newton. With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. (This article accompanied an 8 December 1864 presentation by Maxwell to the Royal Society. His statement that "light and magnetism are affections of the same substance" is at page 499.) The unification of light and electrical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscoelasticity
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103. Background In the nineteenth century, physicists such as Maxwell, Boltzmann, and Kelvin researched and experimented with creep and recovery of glasses, metals, and rubbers. Viscoelasticity was further examined in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maxwell Material
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid. Definition The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, as shown in the diagram. In this configuration, under an applied axial stress, the total stress, \sigma_\mathrm and the total strain, \varepsilon_\mathrm can be defined as follows: :\sigma_\mathrm=\sigma_D = \sigma_S :\varepsilon_\mathrm=\varepsilon_D+\varepsilon_S where the subscript D indicates the stress–strain in the damper and the subscript S indicates the stress–strain in the spring. Taking the derivative of strain with respect to time, we obtain: :\frac = \frac + \frac = \frac + \frac \frac where ''E'' is the elastic modulu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relaxation Time
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time ''t'' is an exponential law (exponential decay). In simple linear systems Mechanics: Damped unforced oscillator Let the homogeneous differential equation: :m\frac+\gamma\frac+ky=0 model damped unforced oscillations of a weight on a spring. The displacement will then be of the form y(t) = A e^ \cos(\mu t - \delta). The constant T (=2m/\gamma) is called the relaxation time of the system and the constant μ is the quasi-frequency. Electronics: RC circuit In an RC circuit containing a charged capacitor and a resistor, the voltage decays exponentially: : V(t)=V_0 e^ \ , The constant \tau = RC\ is called the ''relaxation time'' or RC time constant of the circuit. A nonlinear oscillator circuit which generates a repeating waveform by the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Newtonian Fluids
A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, i.e., constant viscosity independent of stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo. Most commonly, the viscosity (the gradual deformation by shear or tensile stresses) of non-Newtonian fluids is dependent on shear rate or shear rate history. Some non-Newtonian fluids with shear-independent viscosity, however, still exhibit normal stress-differences or other non-Newtonian behavior. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coeffic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]