HOME
*



picture info

Generalized Chi-squared Distribution
In probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution. Definition The generalized chi-squared variable may be described in multiple ways. One is to write it as a linear sum of independent noncentral chi-square variables and a normal variable:Davies, R.B. (1973) Numerical inversion of a characteristic function. Biometrika, 60 (2), 415–417Davies, R,B. (1980) "Algorithm AS155: The distribution of a linear combination of ''χ''2 random variables", ''A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Chi-square PDF
A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set theory, set of elements, as well as one or more common characteristics shared by those elements (thus creating a conceptual model). As such, they are the essential basis of all valid deductive inferences (particularly in logic, mathematics and science), where the process of falsifiability, verification is necessary to determine whether a generalization holds true for any given situation. Generalization can also be used to refer to the process of identifying the parts of a whole, as belonging to the whole. The parts, which might be unrelated when left on their own, may be brought together as a group, hence belonging to the whole by establishing a common relation between them. However, the parts cannot be generalized into a whole—until a common relation is established among ''all'' parts. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Residuals (statistics)
In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the ''estimated'' value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis, where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals. In econometrics, "errors" are also called disturbances. Introduction Suppose there is a series of observations from a univariate distribution and we want to estimate the mean of that distribution (the so-called location model). In this case, the errors are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Normal Distribution
In probability theory, the family of complex normal distributions, denoted \mathcal or \mathcal_, characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: ''location'' parameter ''μ'', ''covariance'' matrix \Gamma, and the ''relation'' matrix C. The standard complex normal is the univariate distribution with \mu = 0, \Gamma=1, and C=0. An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: \mu = 0 and C=0 . This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature. Definitions Complex standard normal random variable The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable Z whose real and imaginary parts are independent normally distributed random var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wireless
Wireless communication (or just wireless, when the context allows) is the transfer of information between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio ''wireless technology'' include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MIMO
In radio, multiple-input and multiple-output, or MIMO (), is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification. At one time, in wireless the term "MIMO" referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically refers to a class of techniques for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting multipath propagation. Additionally, modern MIMO usage often refers to multiple data signals sent to different receivers (with one or more receiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renewal Theory
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times. A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem. The renewal function m(t) (expected number of arrivals) and reward function g(t) (expected reward value) are of key importance in renewal theory. The renewal function satisfies a recursive integral equation, the renewal equation. The key renewal equation gives the limiting value of the convolution of m'(t) with a suitable non-negative function. The superposition of renewal processes can be studied as a special case of Markov re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal Processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, Data storage, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal. History According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s. In 1948, Claude Shannon wrote the influential paper "A Mathematical Theory of Communication" which was published in the Bell System Technical Journal. The paper laid the groundwork for later development of information c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Classifier
In statistics, a quadratic classifier is a statistical classifier that uses a quadratic decision surface to separate measurements of two or more classes of objects or events. It is a more general version of the linear classifier. The classification problem Statistical classification considers a set of vectors of observations x of an object or event, each of which has a known type ''y''. This set is referred to as the training set. The problem is then to determine, for a given new observation vector, what the best class should be. For a quadratic classifier, the correct solution is assumed to be quadratic in the measurements, so ''y'' will be decided based on : \mathbf + \mathbf + c In the special case where each observation consists of two measurements, this means that the surfaces separating the classes will be conic sections (''i.e.'' either a line, a circle or ellipse, a parabola or a hyperbola). In this sense, we can state that a quadratic model is a generalization of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic form is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Distribution
In mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators. Definition A sequence of distributions corresponds to a sequence of random variables ''Zi'' for ''i'' = 1, 2, ..., I . In the simplest case, an asymptotic distribution exists if the probability distribution of ''Zi'' converges to a probability distribution (the asymptotic distribution) as ''i'' increases: see convergence in distribution. A special case of an asymptotic distribution is when the sequence of random variables is always zero or ''Zi'' = 0 as ''i'' approaches infinity. Here the asymptotic distribution is a degenerate distribution, corresponding to the value zero. However, the most usual sense in which the term asymptotic distribution is used ari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Explained Sum Of Squares
In statistics, the explained sum of squares (ESS), alternatively known as the model sum of squares or sum of squares due to regression (SSR – not to be confused with the residual sum of squares (RSS) or sum of squares of errors), is a quantity used in describing how well a model, often a regression model, represents the data being modelled. In particular, the explained sum of squares measures how much variation there is in the modelled values and this is compared to the total sum of squares (TSS), which measures how much variation there is in the observed data, and to the residual sum of squares, which measures the variation in the error between the observed data and modelled values. Definition The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, , where ''y''''i'' is the ''i'' th observation of the response variable, ''x''''ji'' is the '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]