Gelfand–Naimark–Segal Construction
In functional analysis, a discipline within mathematics, given a C^*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A (called ''states''). The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal. States and representations A *-representation of a C^*-algebra A on a Hilbert space H is a mapping \pi from A into the algebra of bounded operators on H such that * \pi is a ring homomorphism which carries involution on A into involution on operators * \pi is nondegenerate, that is the space of vectors \pi (x) \xi is dense as x ranges through A and \xi ranges through H. Note that if A has an identity, nondegeneracy means exactly \pi is unit-preserving, i.e. \pi maps the identity of A to the identity operator on H. A state on a C^*-algebra A is a positive linear functional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Enveloping Von Neumann Algebra
In operator algebras, the enveloping von Neumann algebra of a C*-algebra is a von Neumann algebra that contains all the operator-algebraic information about the given C*-algebra. This may also be called the ''universal'' enveloping von Neumann algebra, since it is given by a universal property; and (as always with von Neumann algebras) the term ''W*-algebra'' may be used in place of ''von Neumann algebra''. Definition Let ''A'' be a C*-algebra and ''π''''U'' be its universal representation, acting on Hilbert space ''H''''U''. The image of ''π''''U'', ''π''''U''(''A''), is a C*-subalgebra of bounded operators on ''H''''U''. The enveloping von Neumann algebra of ''A'' is the closure of ''π''''U''(''A'') in the weak operator topology. It is sometimes denoted by ''A''′′. Properties The universal representation ''π''''U'' and ''A''′′ satisfies the following universal property: for any representation ''π'', there is a unique *-homomorphis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Operator Topology
In functional analysis, the weak operator topology, often abbreviated WOT,Ilijas Farah, Combinatorial Set Theory of C*-algebras' (2019), p. 80. is the weakest topology on the set of bounded operators on a Hilbert space H, such that the functional sending an operator T to the complex number \langle Tx, y\rangle is continuous for any vectors x and y in the Hilbert space. Explicitly, for an operator T there is base of neighborhoods of the following type: choose a finite number of vectors x_i, continuous functionals y_i, and positive real constants \varepsilon_i indexed by the same finite set I. An operator S lies in the neighborhood if and only if , y_i(T(x_i) - S(x_i)), 0. Relationships between different topologies on ''B(X,Y)'' The different terminology for the various topologies on B(X,Y) can sometimes be confusing. For instance, "strong convergence" for vectors in a normed space sometimes refers to norm-convergence, which is very often distinct from (and stronger than) tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Representation (C*-algebra)
In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as ''universal representation techniques'' in the literature. Formal definition and properties :Definition. Let ''A'' be a C*-algebra with state space ''S''. The representation ::\Phi := \bigoplus_ \pi_\rho :on the Hilbert space H_ is known as the univer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faithful Functor
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Formal definitions Explicitly, let ''C'' and ''D'' be ( locally small) categories and let ''F'' : ''C'' → ''D'' be a functor from ''C'' to ''D''. The functor ''F'' induces a function :F_\colon\mathrm_(X,Y)\rightarrow\mathrm_(F(X),F(Y)) for every pair of objects ''X'' and ''Y'' in ''C''. The functor ''F'' is said to be *faithful if ''F''''X'',''Y'' is injectiveJacobson (2009), p. 22 *full if ''F''''X'',''Y'' is surjectiveMac Lane (1971), p. 14 *fully faithful (= full and faithful) if ''F''''X'',''Y'' is bijective for each ''X'' and ''Y'' in ''C''. Properties A faithful functor need not be injective on objects or morphisms. That is, two objects ''X'' and ''X''′ may map to the same object in ''D'' (which is why the range of a full and faithful functor is not necessarily iso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gelfand–Naimark Theorem
In mathematics, the Gelfand–Naimark theorem states that an arbitrary C*-algebra ''A'' is isometrically *-isomorphic to a C*-subalgebra of bounded operators on a Hilbert space. This result was proven by Israel Gelfand and Mark Naimark in 1943 and was a significant point in the development of the theory of C*-algebras since it established the possibility of considering a C*-algebra as an abstract algebraic entity without reference to particular realizations as an operator algebra. Details The Gelfand–Naimark representation π is the Hilbert space analogue of the direct sum of representations π''f'' of ''A'' where ''f'' ranges over the set of pure states of A and π''f'' is the irreducible representation associated to ''f'' by the GNS construction. Thus the Gelfand–Naimark representation acts on the Hilbert direct sum of the Hilbert spaces ''H''''f'' by : \pi(x) bigoplus_ H_f= \bigoplus_ \pi_f(x)H_f. π(''x'') is a bounded linear operator since it is the direct sum o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Approximate Identity
In mathematics, particularly in functional analysis and ring theory, an approximate identity is a net in a Banach algebra or ring (generally without an identity) that acts as a substitute for an identity element. Definition A right approximate identity in a Banach algebra ''A'' is a net \ such that for every element ''a'' of ''A'', \lim_\lVert ae_\lambda - a \rVert = 0. Similarly, a left approximate identity in a Banach algebra ''A'' is a net \ such that for every element ''a'' of ''A'', \lim_\lVert e_\lambda a - a \rVert = 0. An approximate identity is a net which is both a right approximate identity and a left approximate identity. C*-algebras For C*-algebras, a right (or left) approximate identity consisting of self-adjoint elements is the same as an approximate identity. The net of all positive elements in ''A'' of norm ≤ 1 with its natural order is an approximate identity for any C*-algebra. This is called the canonical approximate identity of a C*-algebra. Approx ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjoint Of An Operator
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators, whose domain is topologically dense in, but not necessarily equal to, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy Completion
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots of elements from X of a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d(x_m, x_n) < r. Complete space A metric space is complete if any of the following equivalent conditions are satisfied: #Every Cauchy seq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Linear Functional
In mathematics, more specifically in functional analysis, a positive linear functional on an ordered vector space (V, \leq) is a linear functional f on V so that for all positive elements v \in V, that is v \geq 0, it holds that f(v) \geq 0. In other words, a positive linear functional is guaranteed to take nonnegative values for positive elements. The significance of positive linear functionals lies in results such as Riesz–Markov–Kakutani representation theorem. When V is a complex vector space, it is assumed that for all v\ge0, f(v) is real. As in the case when V is a C*-algebra with its partially ordered subspace of self-adjoint elements, sometimes a partial order is placed on only a subspace W\subseteq V, and the partial order does not extend to all of V, in which case the positive elements of V are the positive elements of W, by abuse of notation. This implies that for a C*-algebra, a positive linear functional sends any x \in V equal to s^s for some s \in V to a real num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |