Enveloping Von Neumann Algebra
   HOME
*





Enveloping Von Neumann Algebra
In operator algebras, the enveloping von Neumann algebra of a C*-algebra is a von Neumann algebra that contains all the operator-algebraic information about the given C*-algebra. This may also be called the ''universal'' enveloping von Neumann algebra, since it is given by a universal property; and (as always with von Neumann algebras) the term ''W*-algebra'' may be used in place of ''von Neumann algebra''. Definition Let ''A'' be a C*-algebra and ''π''''U'' be its universal representation, acting on Hilbert space ''H''''U''. The image of ''π''''U'', ''π''''U''(''A''), is a C*-subalgebra of bounded operators on ''H''''U''. The enveloping von Neumann algebra of ''A'' is the closure of ''π''''U''(''A'') in the weak operator topology. It is sometimes denoted by ''A''′′. Properties The universal representation ''π''''U'' and ''A''′′ satisfies the following universal property: for any representation ''π'', there is a unique *-homomorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Algebras
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are phrased in algebraic terms, while the techniques used are highly analytic.''Theory of Operator Algebras I'' By Masamichi Takesaki, Springer 2012, p vi Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory. Overview Operator algebras can be used to study arbitrary sets of operators with little algebraic relation ''simultaneously''. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general operator algebras are non-commutative rings. An operator alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of categories and functors by mean of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as initial or terminal objects of a comma category ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GNS Construction
GNS may refer to: Places * Binaka Airport, in Gunung Sitoli, Nias Island, Indonesia * Gainesville station (Georgia), an Amtrak station in Georgia, United States Companies and organizations * Gesellschaft für Nuklear-Service, a German nuclear-waste services company * Ghana Nuclear Society, nuclear energy advocacy organization * Glenlyon Norfolk School in Victoria, British Columbia, Canada * GNS Healthcare, an American data analytics company * GNS Science, a New Zealand earth-science research institute * Gordon-North Sydney Hockey Club, based in Sydney, Australia * Government of National Salvation, in Serbia during the Second World War * Gunns, a defunct Australian timber company Other uses * Gelfand–Naimark–Segal construction, a theorem in functional analysis * General News Service, a BBC-internal news-distribution service * GEOnet Names Server, a database of place names and locations * Global Namespace, computer networking concept * GNS theory, in role-playing game ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Operator Topology
In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space H, such that the functional sending an operator T to the complex number \langle Tx, y\rangle is continuous for any vectors x and y in the Hilbert space. Explicitly, for an operator T there is base of neighborhoods of the following type: choose a finite number of vectors x_i, continuous functionals y_i, and positive real constants \varepsilon_i indexed by the same finite set I. An operator S lies in the neighborhood if and only if , y_i(T(x_i) - S(x_i)), 0. Relationships between different topologies on ''B(X,Y)'' The different terminology for the various topologies on B(X,Y) can sometimes be confusing. For instance, "strong convergence" for vectors in a normed space sometimes refers to norm-convergence, which is very often distinct from (and stronger than) than SOT-convergence when the normed space in question is B(X,Y). The w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Functional Calculus
In mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra. Theorem Theorem. Let ''x'' be a normal element of a C*-algebra ''A'' with an identity element e. Let ''C'' be the C*-algebra of the bounded continuous functions on the spectrum σ(''x'') of ''x''. Then there exists a unique mapping π : C → A, where ''π(f)'' is denoted ''f(x)'', such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = ''x'', where id denotes the function ''z'' → ''z'' on σ(''x''). In particular, this theorem implies that bounded normal operators on a Hilbert space have a continuous functional calculus. Its proof is almost immediate from the Gelfand representation: it suffices to assume ''A'' is the C*-algebra of continuous functions on some compact space ''X'' and define : \pi(f) = f \circ x. Uniqueness follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Functional Calculus
In functional analysis, a branch of mathematics, the Borel functional calculus is a ''functional calculus'' (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if ''T'' is an operator, applying the squaring function ''s'' → ''s''2 to ''T'' yields the operator ''T''2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator or the exponential e^. The 'scope' here means the kind of ''function of an operator'' which is allowed. The Borel functional calculus is more general than the continuous functional calculus, and its focus is different than the holomorphic functional calculus one. More precisely, the Borel functional calculus allows for applying an arbitrary Borel function to a self-adjoint operator, in a way that generalizes applying a polynomial function. Motivation If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sherman–Takeda Theorem
In mathematics, the Sherman–Takeda theorem states that if ''A'' is a C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous ... then its double dual is a W*-algebra, and is isomorphic to the weak closure of ''A'' in the universal representation of ''A''. The theorem was announced by and proved by . The double dual of ''A'' is called the universal enveloping W*-algebra of ''A''. References * * {{DEFAULTSORT:Sherman-Takeda theorem Banach algebras C*-algebras Functional analysis Operator theory Von Neumann algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfand–N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]