Gaussian Copula Gaussian Marginals
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters ** Elliptic Gauss sum, an analog of a Gauss sum **Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions * Gauss's criterion – described oEncyclopedia of Mathematics* Gauss's hypergeometric theorem, an identity on hypergeometric series *Gauss plane Statistics *Gauss–Kuzmi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Friedrich Gauss 1840 By Jensen
Carl may refer to: *Carl, Georgia, city in USA *Carl, West Virginia, an unincorporated community * Carl (name), includes info about the name, variations of the name, and a list of people with the name *Carl² ''Carl²'' (''Carl Squared'') is a Canadian animated series which explores what would happen if a teenager had a clone. The concept of the series is a mixture of biological studies and normal teenage life. Plot Carl Crashman is a lazy 14-year-old ..., a TV series * "Carl", an episode of television series ''Aqua Teen Hunger Force'' * An informal nickname for a student or alum of Carleton College CARL may refer to: *Canadian Association of Research Libraries *Colorado Alliance of Research Libraries See also *Carle (other) *Charles *Carle, a surname *Karl (other) *Karle (other) {{disambig ja:カール zh:卡尔 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Lemma (Riemannian Geometry)
In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let ''M'' be a Riemannian manifold, equipped with its Levi-Civita connection, and ''p'' a point of ''M''. The exponential map is a mapping from the tangent space at ''p'' to ''M'': :\mathrm : T_pM \to M which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in ''T''p''M'' under the exponential map is perpendicular to all geodesics originating at ''p''. The lemma allows the exponential map to be understood as a radial isometry, and is of fundamental importance in the study of geodesic convexity and normal coordinates. Introduction We define the exponential map at p\in M by : \exp_p: T_pM\supset B_(0) \longrightarrow M,\quad vt \longmapsto \gamma_(t), where \gamma_ is the unique geodesic with \gamma_(0)= ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Area Formula
The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like threading shoelaces. It has applications in surveying and forestry,Hans Pretzsch, Forest Dynamics, Growth and Yield: From Measurement to Model', Springer, 2009, , p. 232. among other areas. The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 and is based on the trapezoid formula which was described by Carl Friedrich Gauss and C.G.J. Jacobi. The triangle form of the area formula can be considered to be a special case of Green's theorem. The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Newton Line
In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.Claudi Alsina, Roger B. Nelsen: ''Charming Proofs: A Journey Into Elegant Mathematics''. MAA, 2010, , pp. 108–109 () Properties The line segments and that connect the midpoints of opposite sides (the bimedians) of a convex quadrilateral intersect in a point that lies on the Newton line. This point bisects the line segment that connects the diagonal midpoints. By Anne's theorem and its converse, any interior point ''P'' on the Newton line of a quadrilateral has the property that : triangle ABP+ triangle CDP= triangle ADP+ triangle BCP where denotes the area of triangle . If the quadrilateral is a tangential quadrilateral, then its incenter also lies on this line.Dušan Djukić, Vladimir Janković, Ivan Matić, Nikola Petrović, ''The IMO Compendium'', Springer, 2006, p. 15. See also *Complete quadrangle * Newton's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss–Manin Connection
In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s of the family. It was introduced by for curves ''S'' and by in higher dimensions. Flat sections of the bundle are described by differential equations; the best-known of these is the Picard–Fuchs equation, which arises when the family of varieties is taken to be the family of elliptic curves. In intuitive terms, when the family is locally trivial, cohomology classes can be moved from one fiber in the family to nearby fibers, providing the 'flat section' concept in purely topological terms. The existence of the connection is to be inferred from the flat sections. Intuition Consider a smooth morphism of schemes X\to B over characteristic 0. If we consider these spaces as complex analytic spaces, then the Ehresmann fibration theorem te ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss–Codazzi Equations
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi Formulas) are fundamental formulas which link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold. The equations were originally discovered in the context of surfaces in three-dimensional Euclidean space. In this context, the first equation, often called the Gauss equation (after its discoverer Carl Friedrich Gauss), says that the Gauss curvature of the surface, at any given point, is dictated by the derivatives of the Gauss map at that point, as encoded by the second fundamental form. The second equation, called the Codazzi equation or Codazzi-Mainardi equation, states that the covariant derivative of the second fundamental form is fully symmetric. It is named for Gaspare Mainardi (1856) and Delfino Codazzi (1868 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Braid Theory
A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-stranded structure. More complex patterns can be constructed from an arbitrary number of strands to create a wider range of structures (such as a fishtail braid, a five-stranded braid, rope braid, a French braid and a waterfall braid). The structure is usually long and narrow with each component strand functionally equivalent in zigzagging forward through the overlapping mass of the others. It can be compared with the process of weaving, which usually involves two separate perpendicular groups of strands (warp and weft). Historically, the materials used have depended on the indigenous plants and animals available in the local area. During the Industrial Revolution, mechanized braiding equipment was invented to increase production. The braiding te ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geometry" and is widely regarded as a leader in geometry and one of the greatest mathematicians of the twentieth century, winning numerous awards and recognition including the Wolf Prize and the inaugural Shaw Prize. In memory of Shiing-Shen Chern, the International Mathematical Union established the Chern Medal in 2010 to recognize "an individual whose accomplishments warrant the highest level of recognition for outstanding achievements in the field of mathematics". Chern worked at the Institute for Advanced Study (1943–45), spent about a decade at the University of Chicago (1949-1960), and then moved to University of California, Berkeley, where he co-founded the Mathematical Sciences Research Institute in 1982 and was the institute's found ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chern–Gauss–Bonnet Theorem
In mathematics, the Chern theorem (or the Chern–Gauss–Bonnet theorem after Shiing-Shen Chern, Carl Friedrich Gauss, and Pierre Ossian Bonnet) states that the Euler–Poincaré characteristic (a topological invariant defined as the alternating sum of the Betti numbers of a topological space) of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial (the Euler class) of its curvature form (an analytical invariant). It is a highly non-trivial generalization of the classic Gauss–Bonnet theorem (for 2-dimensional manifolds / surfaces) to higher even-dimensional Riemannian manifolds. In 1943, Carl B. Allendoerfer and André Weil proved a special case for extrinsic manifolds. In a classic paper published in 1944, Shiing-Shen Chern proved the theorem in full generality connecting global topology with local geometry. Riemann–Roch and Atiyah–Singer are other generalizations of the Gauss–Bonnet theorem. Statement One useful form o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |