Chern–Gauss–Bonnet Theorem
   HOME

TheInfoList



OR:

In mathematics, the Chern theorem (or the Chern–Gauss–Bonnet theorem after
Shiing-Shen Chern Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
,
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, and
Pierre Ossian Bonnet Pierre Ossian Bonnet (; 22 December 1819, Montpellier – 22 June 1892, Paris) was a French mathematician. He made some important contributions to the differential geometry of surfaces, including the Gauss–Bonnet theorem. Biography Early ye ...
) states that the
Euler–Poincaré characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
(a
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
defined as the alternating sum of the
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplici ...
s of a topological space) of a closed even-dimensional Riemannian manifold is equal to the
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along wit ...
of a certain polynomial (the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
) of its
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algeb ...
(an analytical invariant). It is a highly non-trivial generalization of the classic
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a t ...
(for 2-dimensional manifolds /
surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat * Sur ...
) to higher even-dimensional Riemannian manifolds. In 1943, Carl B. Allendoerfer and André Weil proved a special case for extrinsic manifolds. In a classic paper published in 1944,
Shiing-Shen Chern Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
proved the theorem in full generality connecting global
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
with local
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
. Riemann–Roch and Atiyah–Singer are other generalizations of the Gauss–Bonnet theorem.


Statement

One useful form of the Chern theorem is that : \chi(M) = \int_M e(\Omega) where \chi(M) denotes the Euler characteristic of ''M.'' The
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
is defined as : e(\Omega) = \frac 1 \operatorname(\Omega). where we have the
Pfaffian In mathematics, the determinant of a skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depend on the size of the matrix. The value of this polynomial, ...
\operatorname(\Omega). Here ''M'' is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
2''n''-dimensional Riemannian manifold without
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film *Boundary (cricket), the edge of the pla ...
, and \Omega is the associated
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algeb ...
of the Levi-Civita connection. In fact, the statement holds with \Omega the curvature form of any
metric connection In mathematics, a metric connection is a connection in a vector bundle ''E'' equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along ...
on the tangent bundle, as well as for other vector bundles over M . Since the dimension is 2''n'', we have that \Omega is an \mathfrak s\mathfrak o(2n)-valued 2-differential form on ''M'' (see special orthogonal group). So \Omega can be regarded as a skew-symmetric 2''n'' × 2''n'' matrix whose entries are 2-forms, so it is a matrix over the commutative ring ^\text\,T^*M. Hence the Pfaffian is a 2''n''-form. It is also an
invariant polynomial In mathematics, an invariant polynomial is a polynomial P that is invariant under a group \Gamma acting on a vector space V. Therefore, P is a \Gamma-invariant polynomial if :P(\gamma x) = P(x) for all \gamma \in \Gamma and x \in V. Cases of p ...
. However, Chern's theorem in general is that for any closed C^\infty orientable ''n''-dimensional ''M'', : \chi(M) = (e(TM), where the above pairing (,) denotes the
cap product In algebraic topology the cap product is a method of adjoining a chain of degree ''p'' with a cochain of degree ''q'', such that ''q'' ≤ ''p'', to form a composite chain of degree ''p'' − ''q''. It was introduced by Eduard Čech in 1936, ...
with the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
of the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
TM.


Proofs

In 1944, the general theorem was first proved by S. S. Chern in a classic paper published by the
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
math department. In 2013, a proof of the theorem via
supersymmetric In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
Euclidean field theories was also found.


Applications

The Chern–Gauss–Bonnet theorem can be seen as a special instance in the theory of characteristic classes. The Chern integrand is the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
. Since it is a top-dimensional differential form, it is closed. The
naturality In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natura ...
of the Euler class means that when changing the
Riemannian metric In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space '' ...
, one stays in the same cohomology class. That means that the integral of the Euler class remains constant as the metric is varied and is thus a global invariant of the smooth structure. The theorem has also found numerous applications in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, including: * adiabatic phase or
Berry's phase In classical and quantum mechanics, geometric phase is a phase difference acquired over the course of a cycle, when a system is subjected to cyclic adiabatic processes, which results from the geometrical properties of the parameter space of the Ha ...
, * string theory, * condensed matter physics, *
topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathe ...
, *
topological phases of matter In physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian ge ...
(see the 2016 Nobel Prize in physics by Duncan Haldane et al.).


Special cases


Four-dimensional manifolds

In dimension 2n=4, for a compact oriented manifold, we get :\chi(M) = \frac \int_M \left( , \text, ^2 - 4 , \text, ^2 + R^2 \right) \, d\mu where \text is the full
Riemann curvature tensor In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. ...
, \text is the
Ricci curvature tensor In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measur ...
, and R is the
scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometr ...
. This is particularly important in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, where spacetime is viewed as a 4-dimensional manifold.


Even-dimensional hypersurfaces

When M is a compact, even-dimensional
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
in R''n+1'' we get :\int_M K\,dV = \frac\gamma_n\,\chi(M) where ''dV'' is the
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form :dV ...
of the hypersurface, K is the
Jacobian determinant In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables ...
of the
Gauss map In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere ''S''2. Namely, given a surface ''X'' lying in R3, the Gauss map is a continuous map ''N'': ''X'' → ''S''2 such that ' ...
, and \gamma_n is the surface area of the unit n-sphere.


Gauss–Bonnet theorem

The
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a t ...
is a special case when M is a 2-dimensional manifold. It arises as the special case where the topological index is defined in terms of
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplici ...
s and the analytical index is defined in terms of the Gauss–Bonnet integrand. As with the two-dimensional Gauss–Bonnet theorem, there are generalizations when ''M'' is a
manifold with boundary In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ne ...
.


Further generalizations


Atiyah–Singer

A far-reaching generalization of the Gauss–Bonnet theorem is the Atiyah–Singer Index Theorem. Let D be a weakly
elliptic differential operator In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which imp ...
between vector bundles. That means that the
principal symbol In mathematics, the symbol of a linear differential operator is a polynomial representing a differential operator, which is obtained, roughly speaking, by replacing each partial derivative by a new variable. The symbol of a differential operat ...
is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. Strong ellipticity would furthermore require the symbol to be
positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite fu ...
. Let D^* be its
adjoint operator In mathematics, specifically in operator theory, each linear operator A on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where ...
. Then the analytical index is defined as : dim(ker(''D'')) − dim(ker(''D''*)), By ellipticity this is always finite. The index theorem says that this is constant as the elliptic operator is varied smoothly. It is equal to a topological index, which can be expressed in terms of
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes ...
es like the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
. The Chern–Gauss–Bonnet theorem is derived by considering the
Dirac operator In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise forma ...
: D = d + d^*


Odd dimensions

The Chern formula is only defined for even dimensions because the Euler characteristic vanishes for odd dimensions. There is some research being done on 'twisting' the index theorem in
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
to give non-trivial results for odd dimensions. There is also a version of Chern's formula for
orbifold In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space. D ...
s.


History

Shiing-Shen Chern Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
published his proof of the theorem in 1944 while at the
Institute for Advanced Study The Institute for Advanced Study (IAS), located in Princeton, New Jersey, in the United States, is an independent center for theoretical research and intellectual inquiry. It has served as the academic home of internationally preeminent schola ...
. This was historically the first time that the formula was proven without assuming the manifold to be embedded in a Euclidean space, which is what it means by "intrinsic". The special case for a
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
(an n-1-dimensional submanifolds in an n-dimensional Euclidean space) was proved by H. Hopf in which the integrand is the Gauss–Kronecker curvature (the product of all principal curvatures at a point of the hypersurface). This was generalized independently by Allendoerfer in 1939 and Fenchel in 1940 to a Riemannian submanifold of a Euclidean space of any codimension, for which they used the Lipschitz–Killing curvature (the average of the Gauss–Kronecker curvature along each unit normal vector over the unit sphere in the normal space; for an even dimensional submanifold, this is an invariant only depending on the Riemann metric of the submanifold). Their result would be valid for the general case if the
Nash embedding theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of every ...
can be assumed. However, this theorem was not available then, as John Nash published his famous embedding theorem for Riemannian manifolds in 1956. In 1943 Allendoerfer and Weil published their proof for the general case, in which they first used an approximation theorem of H. Whitney to reduce the case to analytic Riemannian manifolds, then they embedded "small" neighborhoods of the manifold isometrically into a Euclidean space with the help of the Cartan–Janet local embedding theorem, so that they can patch these embedded neighborhoods together and apply the above theorem of Allendoerfer and Fenchel to establish the global result. This is, of course, unsatisfactory for the reason that the theorem only involves intrinsic invariants of the manifold, then the validity of the theorem should not rely on its embedding into a Euclidean space. Weil met Chern in Princeton after Chern arrived in August 1943. He told Chern that he believed there should be an intrinsic proof, which Chern was able to obtain within two weeks. The result is Chern's classic paper "A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds" published in the Annals of Mathematics the next year. The earlier work of Allendoerfer, Fenchel, Allendoerfer and Weil were cited by Chern in this paper. The work of Allendoerfer and Weil was also cited by Chern in his second paper related to the same topic.


See also

*
Chern–Weil homomorphism In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold ''M'' in terms of connections and curvature representing ...
*
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
*
Chern–Simons form In mathematics, the Chern–Simons forms are certain secondary characteristic classes. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from wh ...
* Chern–Simons theory * Chern's conjecture (affine geometry) *
Pontryagin number In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundle ...
*
Pontryagin class In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundl ...
* De Rham cohomology *
Berry's phase In classical and quantum mechanics, geometric phase is a phase difference acquired over the course of a cycle, when a system is subjected to cyclic adiabatic processes, which results from the geometrical properties of the parameter space of the Ha ...
* Atiyah–Singer index theorem *
Riemann–Roch theorem The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It rel ...


References

{{DEFAULTSORT:Generalized Gauss-Bonnet theorem Theorems in differential geometry