HOME
*





Gas Phase Electrophoretic Molecular Mobility Analysis
Gas phase electrophoretic molecular mobility analysis (GEMMA) is a method for chemical analysis in which nanoflow electrospray ionization creates highly charged ions from macromolecules that are charge reduced and separated in a differential mobility analyzer. See also *Ion-mobility spectrometry–mass spectrometry * Differential mobility detector *Particle mass analyser *Electrical mobility *Electrical aerosol spectrometer Electrical aerosol spectrometry (EAS) is a technique for measurement of the number-size distribution of aerosol using a combination of electrical charging and multiple solid state electrometer detectors. The technique combines both diffusion and fi ... References Mass spectrometry Laboratory techniques {{physical-chemistry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrospray Ionization
Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes (e.g. matrix-assisted laser desorption/ionization (MALDI)) since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments. Mass spectrometry using ESI is called electrospray ionization mass spectrometry (ESI-MS) or, less commonly, electrospray mass spectrometry (ES-MS). ESI is a so-called 'soft ionization' technique, since there is very little fragmentation. This can be advantageous in the sense that the molecular ion (or more accurately a pseudo molecular ion) is almost alw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macromolecule
A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The most common macromolecules in biochemistry are biopolymers (nucleic acids, proteins, and carbohydrates) and large non-polymeric molecules such as lipids, nanogels and macrocycles. Synthetic fibers and experimental materials such as carbon nanotubes are also examples of macromolecules. Definition The term ''macromolecule'' (''macro-'' + ''molecule'') was coined by Nobel laureate Hermann Staudinger in the 1920s, although his first relevant publication on this field only mentions ''high molecular compounds'' (in excess of 1,000 atoms). At that time the term ''polymer'', as introduced by Berzelius in 1832, had a different meaning from that of today: it simply was another form of isomerism for example with benzene and acetylene and had litt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Mobility Analyzer
Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ion-mobility Spectrometry–mass Spectrometry
Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics. History Earl W. McDaniel has been called the father of ion mobility mass spectrometry. In the early 1960s, he coupled a low-field ion mobility drift cell to a sector mass spectrometer. The combination of time-of-flight mass spectrometry and ion mobility spectrometry was pioneered in 1963 at Bell Labs. In 1963 McAfee and Edelson pub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Mobility Detector
Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Mass Analyser
Particle mass analyser is a measurement technique for classifying aerosol particles according to their mass-to-charge ratio. Techniques exist for classifying (selecting) aerosol particles in the sub 1,000 nm range according to electrical mobility using devices such as differential mobility analysers. Electrical mobility In electrical mobility measurement, aerosol particles are classified according to their aerodynamic drag-charge ratio. If the particle is non-spherical, the electrical-mobility diameter will not correspond to any measurable physical dimensions of the particle. (For a spherical particle, the electrical-mobility diameter will correspond to physically measurable diameter.) Centrifugal particle mass analyzer An alternative technique classifies particles according to their mass-to-charge ratio, using opposing electrical and centrifugal forces. This allows the classifier to select particles of a specified mass-to-charge ratio independent of particle shape. Further ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrical Mobility
Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis. Theory When a charged particle in a gas or liquid is acted upon by a uniform electric field, it will be accelerated until it reaches a constant drift velocity according to the formula : v_\text = \mu E, where : v_\text is the drift velocity ( SI units: m/s), : E is the magnitude of the applied electric field (V/m), : \mu is the mobility (m2/(V·s)). In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: : \mu = \frac. For example, the mobility of the sodium ion (Na+) in water at 25 °C is . This means that a sodium ion in an electric field of 1 V/m would have an averag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrical Aerosol Spectrometer
Electrical aerosol spectrometry (EAS) is a technique for measurement of the number-size distribution of aerosol using a combination of electrical charging and multiple solid state electrometer detectors. The technique combines both diffusion and field charging regimes to cover the diameter range 10 nm to 10 μm. Subsequent developments of the technique enable measurements faster than 1 Hz, although in each case with a reduced size range. Aerosol charging High charging efficiency allows sufficient charge to be placed on individual particles that the use of electrometer detectors is practicable, while the use of parallel electrometer detectors allows real time measurement of the size/number spectrum with output data as fast as 0.25 Hz. Unlike SMPS-type devices, multiple charging is an inherent issue across almost the entire size range of EAS-type devices. Accurate characterization of the electrical charging of the aerosol is therefore an essential component of de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds. In a typical MS procedure, a sample, which may be solid, liquid, or gaseous, is ionized, for example by bombarding it with a beam of electrons. This may cause some of the sample's molecules to break up into positively charged fragments or simply become positively charged without fragmenting. These ions (fragments) are then separated accordin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]