GFDL CM2.X
   HOME
*





GFDL CM2.X
Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL CM2.5) is a coupled atmosphere–ocean general circulation model (AOGCM) developed at the NOAA Geophysical Fluid Dynamics Laboratory in the United States. It is one of the leading climate models used in the Fourth Assessment Report of the IPCC, along with models developed at the Max Planck Institute for Climate Research, the Hadley Centre and the National Center for Atmospheric Research. Composition Atmosphere The atmospheric component of the CM2.X models employs a 24-level atmosphere with horizontal resolution of 2° in east–west and 2.5° in north–south directions. This resolution is sufficient to resolve the large mid-latitude cyclones responsible for weather variability. It is too coarse, however, to resolve processes such as hurricanes or intense thunderstorm outbreaks. The atmosphere includes a representation of radiative fluxes, mixing in the atmospheric boundary layer, representations of the impacts of stratus a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Circulation Model
A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean. It uses the Navier–Stokes equations on a rotating sphere with thermodynamic terms for various energy sources (radiation, latent heat). These equations are the basis for computer programs used to simulate the Earth's atmosphere or oceans. Atmospheric and oceanic GCMs (AGCM and OGCM) are key components along with sea ice and land-surface components. GCMs and global climate models are used for weather forecasting, understanding the climate, and forecasting climate change. Versions designed for decade to century time scale climate applications were originally created by Syukuro Manabe and Kirk Bryan at the Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey. These models are based on the integration of a variety of fluid dynamical, chemical and sometimes biological equations. Terminology The acronym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE