GABA Transporter Type 3
   HOME
*





GABA Transporter Type 3
GABA transporter type 3 (GAT3) uses sodium (Na+) electrochemical gradients to mediate uptake of GABA from the synaptic cleft by surrounding glial cells Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel .... Subtype-selective GAT3 inhibitors are known since 2015. The transporter and its effect on GABA concentrations in the amygdala has been implicated as a key player in the disease of alcoholism. In studies conducted on rat populations, reduction of GAT3 caused rats who formerly preferred sugar to prefer alcohol. Further, studies of deceased alcoholics show a decreased concentration of GAT3 in their brains. See also * GABA transporter 1 * GABA transporter 2 * Solute carrier family References Solute carrier family Neurotransmitter transporters GABA {{membrane-protein-stu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sodium
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23Na. The free metal does not occur in nature, and must be prepared from compounds. Sodium is the sixth most abundant element in the Earth's crust and exists in numerous minerals such as feldspars, sodalite, and halite (NaCl). Many salts of sodium are highly water-soluble: sodium ions have been leached by the action of water from the Earth's minerals over eons, and thus sodium and chlorine are the most common dissolved elements by weight in the oceans. Sodium was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Among many other useful sodium compounds, sodium hydroxide (lye) is used in soap manufacture, and sodium chloride (edible salt) is a de-icing agent and a nutrient for animals including h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrochemical Gradients
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts, the chemical gradient, or difference in Concentration, solute concentration across a membrane, and the electrical gradient, or difference in Electric charge, charge across a membrane. When there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through Molecular diffusion, simple diffusion. Ions also carry an electric charge that forms an electric potential across a membrane. If there is an unequal distribution of charges across the membrane, then the difference in electric potential generates a force that drives ion diffusion until the charges are balanced on both sides of the membrane. Electrochemical gradients are essential to the operation of Electric battery, batteries and other electrochemical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synaptic Cleft
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron. The neurotransmitters are contained within small sacs called synaptic vesicles, and are released into the synaptic cleft by exocytosis. These molecules then bind to neurotransmitter receptors on the postsynaptic cell. Finally, the neurotransmitters are cleared from the synapse through one of several potential mechanisms including enzymatic degradation or re-uptake by specific transporters either on the presynaptic cell or on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glial Cells
Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myelin in the peripheral nervous system, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes, astrocytes, ependymal cells, and microglia, and in the peripheral nervous system they include Schwann cells and satellite cells. Function They have four main functions: *to surround neurons and hold them in place *to supply nutrients and oxygen to neurons *to insulate one neuron from another *to destroy pathogens and remove dead neurons. They also play a role in neurotransmission and synaptic connections, and in physiological processes such as breathing. While glia were thought to outnumber neurons by a ratio of 10:1, recent studies using newer methods and reappraisal of historical quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GABA Transporter 1
GABA transporter 1 (GAT1) also known as sodium- and chloride-dependent GABA transporter 1 is a protein that in humans is encoded by the ''SLC6A1'' gene and belongs to the solute carrier 6 (SLC6) family of transporters. It mediates gamma-aminobutyric acid's translocation from the extracellular to intracellular spaces within brain tissue and the central nervous system as a whole. Structure GAT1 is a 599 amino acid protein that consists of 12 transmembrane domains with an intracellular N-terminus and C-terminus. Function GAT1 is a gamma-aminobutyric acid (GABA) transporter, which removes GABA from the synaptic cleft by shuttling it to presynaptic neurons (where GABA can be recycled) and astrocytes (where GABA can be broken down). GABA Transporter 1 uses energy from the dissipation of a Na+ gradient, aided by the presence of a Cl− gradient, to translocate GABA across CNS neuronal membranes. The stoichiometry for GABA Transporter 1 is 2 Na+: 1 Cl−: 1 GABA. The presence of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GABA Transporter Type 2
GABA transporter 2 (GAT2; SLC6A13) also known as sodium- and chloride-dependent GABA transporter 2 is one of four GABA transporters, GAT1 ( SLC6A1), GAT2 (SLC6A13), GAT3 ( SLC6A11) and BGT1 ( SLC6A12). Note that GAT2 is different from BGT1 despite the fact that the latter transporter is sometimes referred at as (mouse) GAT-2. All these transporters are highly hydrophobic proteins with 12 transmembrane segments, extracellular glycosylation sites, and intracellular consensus sites for phosphorylation, and there is over 50% amino acid homology between each of them. Each binds GABA with varying affinities with BGT1 having the lowest affinity and GAT3 the highest. GAT2 (SLC6A13) is predominantly expressed in hepatocytes in the liver, but is also found in proximal tubules in the kidney as well as in the leptomeninges and in some blood vessels in the brain. Biological function Brain Deletion of the GAT2 gene in mice does not appear to have any dramatic effects on brain function in a no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neurotransmitter Transporters
Neurotransmitter transporters are a class of membrane transport proteins that span the cellular membranes of neurons. Their primary function is to carry neurotransmitters across these membranes and to direct their further transport to specific intracellular locations. There are more than twenty types of neurotransmitter transporters. Vesicular transporters move neurotransmitters into synaptic vesicles, regulating the concentrations of substances within them. Vesicular transporters rely on a proton gradient created by the hydrolysis of adenosine triphosphate (ATP) in order to carry out their work: v-ATPase hydrolyzes ATP, causing protons to be pumped into the synaptic vesicles and creating a proton gradient. Then the efflux of protons from the vesicle provides the energy to bring the neurotransmitter into the vesicle. Neurotransmitter transporters frequently use electrochemical gradients that exist across cell membranes to carry out their work. For example, some transporters use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]