HOME
*





Functional Equation (L-function)
In mathematics, the L-functions of number theory are expected to have several characteristic properties, one of which is that they satisfy certain functional equations. There is an elaborate theory of what these equations should be, much of which is still conjectural. Introduction A prototypical example, the Riemann zeta function has a functional equation relating its value at the complex number ''s'' with its value at 1 − ''s''. In every case this relates to some value ζ(''s'') that is only defined by analytic continuation from the infinite series definition. That is, writingas is conventionalσ for the real part of ''s'', the functional equation relates the cases :σ > 1 and σ < 0, and also changes a case with :0 < σ < 1 in the ''critical strip'' to another such case, reflected in the line σ = ½. Therefore, use of the functional equation is basic, in order to study the zeta-function in the whole

picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Dirichlet Character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b: :1)   \chi(ab) = \chi(a)\chi(b);   i.e. \chi is completely multiplicative. :2)   \chi(a) \begin =0 &\text\; \gcd(a,m)>1\\ \ne 0&\text\;\gcd(a,m)=1. \end (gcd is the greatest common divisor) :3)   \chi(a + m) = \chi(a); i.e. \chi is periodic with period m. The simplest possible character, called the principal character, usually denoted \chi_0, (see Notation below) exists for all moduli: : \chi_0(a)= \begin 0 &\text\; \gcd(a,m)>1\\ 1 &\text\;\gcd(a,m)=1. \end The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions. Notation \phi(n) is Euler's totient function. \zeta_n is a complex primitive n-th root of unity: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type. History Étale cohomology was introduced by , using some suggestions by Jean-Pierre Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as and SGA 4. Grothendieck used étale cohomology to prove some of the Weil conjectures (Bernard Dwork had already managed to prove the rationality part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold (compact and without boundary), then the ''k''th cohomology group of ''M'' is isomorphic to the (n-k)th homology group of ''M'', for all integers ''k'' :H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and (n-k)th Betti numbers of a closed (i.e., compact and without boundary) orientable ''n''-manifold are equal. The ''cohomology'' concept was at that time about 4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Zeta-function
In number theory, the local zeta function (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as :Z(V, s) = \exp\left(\sum_^\infty \frac (q^)^m\right) where is a non-singular -dimensional projective algebraic variety over the field with elements and is the number of points of defined over the finite field extension of . Making the variable transformation gives : \mathit (V,u) = \exp \left( \sum_^ N_m \frac \right) as the formal power series in the variable u. Equivalently, the local zeta function is sometimes defined as follows: : (1)\ \ \mathit (V,0) = 1 \, : (2)\ \ \frac \log \mathit (V,u) = \sum_^ N_m u^\ . In other words, the local zeta function with coefficients in the finite field is defined as a function whose logarithmic derivative generates the number of solutions of the equation defining in the degree extension Formulation Given a finite field ''F'', there is, up to isomorphism, only one field ''Fk'' wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotomic Field
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime ) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences. Definition For , let ; this is a primitive th root of unity. Then the th cyclotomic field is the extension of generated by . Properties * The th cyclotomic polynomial : \Phi_n(x) = \!\!\!\prod_\stackrel\!\!\! \left(x-e^\right) = \!\!\!\prod_\stackrel\!\!\! (x-^k) :is irreducible, so it is the minimal polynomial of over . * The conjugates of in are therefore the other p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Multiplication
In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points. It has also turned out to be a central theme in algebraic number theory, allowing some features of the theory of cyclotomic fields to be carried over to wider areas of application. David Hilbert is said to have remarked that the theory of complex multiplication of elliptic curves was not only the most beautiful part of mathematics but of all science. There is also the higher- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hecke Character
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of ''L''-functions larger than Dirichlet ''L''-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function. A name sometimes used for ''Hecke character'' is the German term Größencharakter (often written Grössencharakter, Grossencharacter, etc.). Definition using ideles A Hecke character is a character of the idele class group of a number field or global function field. It corresponds uniquely to a character of the idele group which is trivial on principal ideles, via composition with the projection map. This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero complex numbers (also called a "quasicharacter"), or as a homomorphism to the unit circle in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Tate (mathematician)
John Torrence Tate Jr. (March 13, 1925 – October 16, 2019) was an American mathematician, distinguished for many fundamental contributions in algebraic number theory, arithmetic geometry and related areas in algebraic geometry. He was awarded the Abel Prize in 2010. Biography Tate was born in Minneapolis, Minnesota. His father, John Tate Sr., was a professor of physics at the University of Minnesota, and a longtime editor of ''Physical Review''. His mother, Lois Beatrice Fossler, was a high school English teacher. Tate Jr. received his bachelor's degree in mathematics in 1946 from Harvard University, and entered the doctoral program in physics at Princeton University. He later transferred to the mathematics department and received his PhD in mathematics in 1950 after completing a doctoral dissertation, titled "Fourier analysis in number fields and Hecke's zeta functions", under the supervision of Emil Artin. Tate taught at Harvard for 36 years before joining the Univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate's Thesis
In number theory, Tate's thesis is the 1950 PhD thesis of completed under the supervision of Emil Artin at Princeton University. In it, Tate used a translation invariant integration on the locally compact group of ideles to lift the zeta function twisted by a Hecke character, i.e. a Hecke L-function, of a number field to a zeta integral and study its properties. Using harmonic analysis, more precisely the Poisson summation formula, he proved the functional equation and meromorphic continuation of the zeta integral and the Hecke L-function. He also located the poles of the twisted zeta function. His work can be viewed as an elegant and powerful reformulation of a work of Erich Hecke on the proof of the functional equation of the Hecke L-function. Erich Hecke used a generalized theta series associated to an algebraic number field and a lattice in its ring of integers. Iwasawa–Tate theory Kenkichi Iwasawa independently discovered essentially the same method (without an analog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]