Faugère's F4 And F5 Algorithms
   HOME
*





Faugère's F4 And F5 Algorithms
In computer algebra, the Faugère F4 algorithm, by Jean-Charles Faugère, computes the Gröbner basis of an ideal of a multivariate polynomial ring. The algorithm uses the same mathematical principles as the Buchberger algorithm, but computes many normal forms in one go by forming a generally sparse matrix and using fast linear algebra to do the reductions in parallel. The Faugère F5 algorithm first calculates the Gröbner basis of a pair of generator polynomials of the ideal. Then it uses this basis to reduce the size of the initial matrices of generators for the next larger basis: If ''G''prev is an already computed Gröbner basis (''f''2, …, ''f''''m'') and we want to compute a Gröbner basis of (''f''1) + ''G''prev then we will construct matrices whose rows are ''m'' ''f''1 such that ''m'' is a monomial not divisible by the leading term of an element of ''G''prev. This strategy allows the algorithm to apply two new criteria based on what Faugère calls ''s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maple (software)
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation. Maple's capacity for symbolic computing include those of a general-purpose computer algebra system. For instance, it can manipulate mathematical expressions and find symbolic solutions to certain problems, such as those arising from ordinary and partial differential equations. Maple is developed commercially by the Canadian software company Maplesoft. The name 'Maple' is a reference to the software's Canadian heritage. Overview Core functionality Users can enter mathematics in traditional mathematical notation. Custom user interfaces can also be created. There is support for numeric computations, to arbitrary precision, as well as symbolic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Python (programming Language)
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamically-typed and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000 and introduced new features such as list comprehensions, cycle-detecting garbage collection, reference counting, and Unicode support. Python 3.0, released in 2008, was a major revision that is not completely backward-compatible with earlier versions. Python 2 was discontinued with version 2.7.18 in 2020. Python consistently ranks as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SINGULAR
Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular homology * SINGULAR, an open source Computer Algebra System (CAS) * Singular or sounder, a group of boar, see List of animal names * Singular matrix, a matrix that is not invertible * Singular measure, a measure or probability distribution whose support has zero Lebesgue (or other) measure * Singular cardinal, an infinite cardinal number that is not a regular cardinal * The property of a ''singularity'' or ''singular point'' in various meanings; see Singularity (other) * Singular (band), a Thai jazz pop duo *'' Singular: Act I'', a 2018 studio album by Sabrina Carpenter *'' Singular: Act II'', a 2019 studio album by Sabrina Carpenter See also * Singulair, Merck trademark for the drug Montelukast * Cingular Wireless AT&T Mobility LLC, also known as AT&T Wireless and marketed as simply AT&T, is an American telecommunications comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SageMath
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, numerical analysis, number theory, calculus and statistics. The first version of SageMath was released on 24 February 2005 as free and open-source software under the terms of the GNU General Public License version 2, with the initial goals of creating an "open source alternative to Magma, Maple, Mathematica, and MATLAB". The originator and leader of the SageMath project, William Stein, was a mathematician at the University of Washington. SageMath uses a syntax resembling Python's, supporting procedural, functional and object-oriented constructs. Development Stein realized when designing Sage that there were many open-source mathematics software packages already written in different languages, namely C, C++, Common Lisp, Fortran and Python. Rather tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magma Computer Algebra System
Magma is a computer algebra system designed to solve problems in algebra, number theory, geometry and combinatorics. It is named after the algebraic structure magma. It runs on Unix-like operating systems, as well as Windows. Introduction Magma is produced and distributed by thComputational Algebra Groupwithin the School of Mathematics and Statistics at the University of Sydney. In late 2006, the booDiscovering Mathematics with Magmawas published by Springer as volume 19 of the Algorithms and Computations in Mathematics series. The Magma system is used extensively within pure mathematics. The Computational Algebra Group maintain a list of publications that cite Magma, and as of 2010 there are about 2600 citations, mostly in pure mathematics, but also including papers from areas as diverse as economics and geophysics. History The predecessor of the Magma system was named Cayley (1982–1993), after Arthur Cayley. Magma was officially released in August 1993 (version 1.0). Vers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maple Computer Algebra System
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation. Maple's capacity for symbolic computing include those of a general-purpose computer algebra system. For instance, it can manipulate mathematical expressions and find symbolic solutions to certain problems, such as those arising from ordinary and partial differential equations. Maple is developed commercially by the Canadian software company Maplesoft. The name 'Maple' is a reference to the software's Canadian heritage. Overview Core functionality Users can enter mathematics in traditional mathematical notation. Custom user interfaces can also be created. There is support for numeric computations, to arbitrary precision, as well as symbol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C/C++
The C and C++ programming languages are closely related but have many significant differences. C++ began as a fork of an early, pre-standardized C, and was designed to be mostly source-and-link compatible with C compilers of the time. Due to this, development tools for the two languages (such as IDEs and compilers) are often integrated into a single product, with the programmer able to specify C or C++ as their source language. However, C is ''not'' a subset of C++, and nontrivial C programs will not compile as C++ code without modification. Likewise, C++ introduces many features that are not available in C and in practice almost all code written in C++ is not conforming C code. This article, however, focuses on differences that cause conforming C code to be ill-formed C++ code, or to be conforming/well-formed in both languages but to behave differently in C and C++. Bjarne Stroustrup, the creator of C++, has suggested that the incompatibilities between C and C++ should be red ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Charles Faugère
Jean-Charles Faugère is the head of the POLSYS project-team (Solvers for Algebraic Systems and Applications) of the Laboratoire d'Informatique de Paris 6 (LIP6) and Paris–Rocquencourt center of INRIA, in Paris. The team was formerly known as SPIRAL and SALSA. Faugère obtained his Ph.D. in mathematics in 1994 at the University of Paris VI, with the dissertation ''"Résolution des systemes d’équations algébriques"'' (Solving systems of algebraic equations), under the supervision of Daniel Lazard. He works on Gröbner bases and their applications, in particular, in cryptology. With his collaborators, he has devised the FGLM algorithm for computing Gröbner bases; he has also introduced the F4 and F5 algorithms for calculating Gröbner bases. In particular, his F5 algorithm allowed him to solve various problems in cryptography such as HFE; he also introduced a new type of cryptanalysis Cryptanalysis (from the Greek ''kryptós'', "hidden", and ''analýein'', "to analyze" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Sequence
In commutative algebra, a regular sequence is a sequence of elements of a commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ... which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. Definitions For a commutative ring ''R'' and an ''R''-Module (mathematics), module ''M'', an element ''r'' in ''R'' is called a non-zero-divisor on ''M'' if ''r m'' = 0 implies ''m'' = 0 for ''m'' in ''M''. An ''M''-regular sequence is a sequence :''r''1, ..., ''r''''d'' in ''R'' such that ''r''''i'' is a not a zero-divisor on ''M''/(''r''1, ..., ''r''''i''-1)''M'' for ''i'' = 1, ..., ''d''. Some authors also require that ''M''/(''r''1, ..., ''r''''d'')''M'' is not zero. Intuitively, to say that '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sparse Matrix
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.g., ''m'' × ''n'' for an ''m'' × ''n'' matrix) is sometimes referred to as the sparsity of the matrix. Conceptually, sparsity corresponds to systems with few pairwise interactions. For example, consider a line of balls connected by springs from one to the next: this is a sparse system as only adjacent balls are coupled. By contrast, if the same line of balls were to have springs connecting each ball to all other balls, the system would correspond to a dense matrix. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]