Frequency (Band)
Frequency (symbol f), measured in '' hertz'' (symbol: Hz), is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity and to distinguish it from '' spatial frequency''. Ordinary frequency is related to '' angular frequency'' (symbol ''ω'', with SI unit radian per second) by a factor of 2 . The period (symbol ''T'') is the interval of time between events, so the period is the reciprocal of the frequency: . Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound), radio waves, and light. For example, if a heart beats at a frequency of 120 times per minute (2 hertz), the period—the interval between beats—is half a second (60 seconds divided by 120 beats). Definitions and units For cyclical phenomena such as oscillations, waves, or for examples of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pendulum
A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. From the first scientific investigations of the pendulum around 1602 by Galileo Galilei, the regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. The pendulum clock invented by Christiaan Huygens in 1658 became the world's standard timekeeper, used in homes and offices for 270 years, and ac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heart Sound
Heart sounds are the noises generated by the beating heart and the resultant flow of blood through it. Specifically, the sounds reflect the turbulence created when the heart valves snap shut. In cardiac auscultation, an examiner may use a stethoscope to listen for these unique and distinct sounds that provide important auditory data regarding the condition of the heart. In healthy adults, there are two normal heart sounds, often described as a ''lub'' and a ''dub'' that occur in sequence with each heartbeat. These are the first heart sound (S1) and second heart sound (S2), produced by the closing of the atrioventricular valves and semilunar valves, respectively. In addition to these normal sounds, a variety of other sounds may be present including heart murmurs, adventitious sounds, and gallop rhythms S3 and S4. Heart murmurs are generated by turbulent flow of blood and a murmur to be heard as turbulent flow must require pressure difference of at least 30 mm of Hg between ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotational Frequency
Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for rotational frequency is \nu (the Greek lowercase letter nu). Tangential speed ''v'', rotational frequency \nu, and radial distance ''r'', are related by the following equation: :v = 2\pi r\nu :v = r\omega An algebraic rearrangement of this equation allows us to solve for rotational frequency: :\nu = v/2\pi r :\omega = v/r Thus, the tangential speed will be directly proportional to ''r'' when all parts of a system simultaneously have the same ''ω'', as for a wheel, disk, or rigid wand. The direct proportionality of ''v'' to ''r'' is not valid for the planets, because the planets have different rotational frequencies. Rotational frequency can measure, for example, how fast a motor is running. ''Rotational speed'' is sometimes used to m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Diagram Of Harmonic Wave Properties
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ocean Surface Wave
In fluid dynamics, a wind wave, water wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result from the wind blowing over the water surface. The contact distance in the direction of the wind is known as the ''fetch''. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples, to waves over high, being limited by wind speed, duration, fetch, and water depth. When directly generated and affected by local wind, a wind wave system is called a wind sea. Wind waves will travel in a great circle route after being generated – curving slightly left in the southern hemisphere and slightly right in the northern hemisphere. After moving out of the area of fetch, wind waves are called '' swells'' and can travel thousands of kilometers. A noteworthy example of this is waves generated south of Tasmania during heavy winds that will travel across the Pacif ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotational Frequency
Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for rotational frequency is \nu (the Greek lowercase letter nu). Tangential speed ''v'', rotational frequency \nu, and radial distance ''r'', are related by the following equation: :v = 2\pi r\nu :v = r\omega An algebraic rearrangement of this equation allows us to solve for rotational frequency: :\nu = v/2\pi r :\omega = v/r Thus, the tangential speed will be directly proportional to ''r'' when all parts of a system simultaneously have the same ''ω'', as for a wheel, disk, or rigid wand. The direct proportionality of ''v'' to ''r'' is not valid for the planets, because the planets have different rotational frequencies. Rotational frequency can measure, for example, how fast a motor is running. ''Rotational speed'' is sometimes used to m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second
The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Units ( SI) is more precise:The second ..is defined by taking the fixed numerical value of the caesium frequency, Δ''ν''Cs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This current definition was adopted in 1967 when it became feasible to define the second based on fundamental properties of nature with caesium clocks. Because the speed of Earth's rotation varies and is slowing ever so slightly, a leap second is added at irregular intervals to civil time to keep clocks in sync with Earth's rotation. Uses Analog clocks and watches often ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle Per Second
The cycle per second is a once-common English name for the unit of frequency now known as the hertz (Hz). The plural form was typically used, often written cycles per second, cycles/second, c.p.s., c/s, or, ambiguously, just cycles (Cy./Cyc.). The term comes from the fact that sound waves have a frequency measurable in their number of oscillations, or '' cycles'', per second. With the organization of the International System of Units in 1960, the cycle per second was officially replaced by the hertz, or reciprocal second, "s−1" or "1/s". Symbolically, "cycle per second" units are "cycle/second", while hertz is "Hz" or "s−1". For higher frequencies, ''kilocycles'' (kc), as an abbreviation of ''kilocycles per second'' were often used on components or devices. Other higher units like ''megacycle'' (Mc) and less commonly ''kilomegacycle'' (kMc) were used before 1960 and in some later documents. These have modern equivalents such as kilohertz (kHz), megahertz (MHz), and gigahert ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CGPM
The General Conference on Weights and Measures (GCWM; french: Conférence générale des poids et mesures, CGPM) is the supreme authority of the International Bureau of Weights and Measures (BIPM), the intergovernmental organization established in 1875 under the terms of the Metre Convention through which member states act together on matters related to measurement science and measurement standards. The CGPM is made up of delegates of the governments of the member states and observers from the Associates of the CGPM. Under its authority, the International Committee for Weights and Measures (ICWM; ) executes an exclusive direction and supervision of the BIPM. Initially the Metre Convention was only concerned with the kilogram and the metre, but in 1921 the scope of the treaty was extended to accommodate all physical measurements and hence all aspects of the metric system. In 1960 the 11th CGPM approved the International System of Units, usually known as "SI". The General Confer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International Electrotechnical Commission
The International Electrotechnical Commission (IEC; in French: ''Commission électrotechnique internationale'') is an international standards organization that prepares and publishes international standards for all electrical, electronic and related technologies – collectively known as "electrotechnology". IEC standards cover a vast range of technologies from power generation, transmission and distribution to home appliances and office equipment, semiconductors, fibre optics, batteries, solar energy, nanotechnology and marine energy as well as many others. The IEC also manages four global conformity assessment systems that certify whether equipment, system or components conform to its international standards. All electrotechnologies are covered by IEC Standards, including energy production and distribution, electronics, magnetics and electromagnetics, electroacoustics, multimedia, telecommunication and medical technology, as well as associated general disciplines such as t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heinrich Hertz
Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's Maxwell's equations, equations of electromagnetism. The unit of frequency, cycle per second, was named the "hertz" in his honor.IEC History . Iec.ch. Biography Heinrich Rudolf Hertz was born in 1857 in Hamburg, then a sovereign state of the German Confederation, into a prosperous and cultured Hanseatic (class), Hanseatic family. His father was Gustav Ferdinand Hertz. His mother was Anna Elisabeth Pfefferkorn. While studying at the Gelehrtenschule des Johanneums in Hamburg, Hertz showed an aptitude for sciences as well as languages, learning Arabic. He studied sciences and engineering in th ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nu (letter)
Nu ( ell, νι ''ni'' ) is the 13th letter of the Greek alphabet (uppercase Ν, lowercase ν), representing the voiced alveolar nasal . In the system of Greek numerals it has a value of 50. It is derived from the ancient Phoenician language nun . Its Latin equivalent is N, though the lowercase (\nu) resembles the Roman lowercase v. The name of the letter is written in Ancient Greek and traditional Modern Greek polytonic orthography, while in Modern Greek it is written . Letters that arose from nu include Roman N and Cyrillic Н. Symbology Like Mu, the uppercase Nu is normally identical to Latin N and is therefore not used internationally in scientific or mathematical contexts. The lower-case letter is used as a symbol for: * Mathematics: ** Degree of freedom in statistics. ** The greatest fixed point of a function, as commonly used in the μ-calculus. ** Free names of a process, as used in the π-calculus. ** One of the Greeks in mathematical finance, known as "vega ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |