Fractional Factorial Design
In statistics, fractional factorial designs are experimental designs consisting of a carefully chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-of-effects principle to expose information about the most important features of the problem studied, while using a fraction of the effort of a full factorial design in terms of experimental runs and resources. In other words, it makes use of the fact that many experiments in full factorial design are often redundant, giving little or no new information about the system. Notation Fractional designs are expressed using the notation ''l''k − p, where ''l'' is the number of levels of each factor investigated, ''k'' is the number of factors investigated, and ''p'' describes the size of the fraction of the full factorial used. Formally, ''p'' is the number of ''generators'', assignments as to which effects or interactions are ''confounded'', ''i.e.'', ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Experimental Design
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation. In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial Design
In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors. A full factorial design may also be called a fully crossed design. Such an experiment allows the investigator to study the effect of each factor on the response variable, as well as the effects of interactions between factors on the response variable. For the vast majority of factorial experiments, each factor has only two levels. For example, with two factors each taking two levels, a factorial experiment would have four treatment combinations in total, and is usually called a ''2×2 factorial design''. In such a design, the interaction between the variables is often the most important. This applies even to scenarios where a main effect and an interaction is present. If the number of combinations in a full factorial design i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sparsity-of-effects Principle
In the statistical analysis of the results from factorial experiments, the sparsity-of-effects principle states that a system is usually dominated by main effects and low-order interactions. Thus it is most likely that main (single factor) effects and two-factor interactions are the most significant responses in a factorial experiment. In other words, higher order interactions such as three-factor interactions are very rare. This is sometimes referred to as the ''hierarchical ordering principle''. The sparsity-of-effects principle actually refers to the idea that only a few effects in a factorial experiment will be statistically significant. This principle is only valid on the assumption of a factor space far from a stationary point. See also * Occam's Razor * Pareto principle The Pareto principle states that for many outcomes, roughly 80% of consequences come from 20% of causes (the "vital few"). Other names for this principle are the 80/20 rule, the law of the vital few, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interaction (statistics)
In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive). Although commonly thought of in terms of causal relationships, the concept of an interaction can also describe non-causal associations (then also called moderation or effect modification). Interactions are often considered in the context of regression analyses or factorial experiments. The presence of interactions can have important implications for the interpretation of statistical models. If two variables of interest interact, the relationship between each of the interacting variables and a third "dependent variable" depends on the value of the other interacting variable. In practice, this makes it more difficult to predict the consequences of changing the value of a variable, particu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Response Surface Methodology
In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. The method was introduced by George E. P. Box and K. B. Wilson in 1951. The main idea of RSM is to use a sequence of designed experiments to obtain an optimal response. Box and Wilson suggest using a second-degree polynomial model to do this. They acknowledge that this model is only an approximation, but they use it because such a model is easy to estimate and apply, even when little is known about the process. Statistical approaches such as RSM can be employed to maximize the production of a special substance by optimization of operational factors. Of late, for formulation optimization, the RSM, using proper design of experiments (DoE), has become extensively used. In contrast to conventional methods, the interaction among process variables can be determined by statistical techniques. Basic approach of response surfa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relation (mathematics)
In mathematics, a relation on a set may, or may not, hold between two given set members. For example, ''"is less than"'' is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1 is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation defined by is neither symmetric nor antisymmetric, let alone asymmetric. ; : for all , if and then . A transitive relation is irreflexive if and only if it is asymmetric. For example, "is ancestor of" is a transitive relation, while "is parent of" is not. ; : for all , if then or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : for all , or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : every nonempty subset of contains a minimal element with respect to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial Experiment
In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors. A full factorial design may also be called a fully crossed design. Such an experiment allows the investigator to study the effect of each factor on the response variable, as well as the effects of interactions between factors on the response variable. For the vast majority of factorial experiments, each factor has only two levels. For example, with two factors each taking two levels, a factorial experiment would have four treatment combinations in total, and is usually called a ''2×2 factorial design''. In such a design, the interaction between the variables is often the most important. This applies even to scenarios where a main effect and an interaction is present. If the number of combinations in a full factorial design i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial Experiment
In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors. A full factorial design may also be called a fully crossed design. Such an experiment allows the investigator to study the effect of each factor on the response variable, as well as the effects of interactions between factors on the response variable. For the vast majority of factorial experiments, each factor has only two levels. For example, with two factors each taking two levels, a factorial experiment would have four treatment combinations in total, and is usually called a ''2×2 factorial design''. In such a design, the interaction between the variables is often the most important. This applies even to scenarios where a main effect and an interaction is present. If the number of combinations in a full factorial design i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robust Parameter Design (RPD)
A robust parameter design, introduced by Genichi Taguchi, is an experimental design used to exploit the interaction between control and uncontrollable noise variables by robustification—finding the settings of the control factors that minimize response variation from uncontrollable factors. Control variables are variables of which the experimenter has full control. Noise variables lie on the other side of the spectrum. While these variables may be easily controlled in an experimental setting, outside of the experimental world they are very hard, if not impossible, to control. Robust parameter designs use a naming convention similar to that of FFDs. A 2''(m1+m2)-(p1-p2)'' is a 2-level design where ''m1'' is the number of control factors, ''m2'' is the number of noise factors, ''p1'' is the level of fractionation for control factors, and ''p2'' is the level of fractionation for noise factors. Consider an RPD cake-baking example from Montgomery (2005), where an experimenter wants ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Design Of Experiments
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation. In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |