Fourier-related Transform
This is a list of linear transformations of functions related to Fourier analysis. Such transformations map a function to a set of coefficients of basis functions, where the basis functions are sinusoidal and are therefore strongly localized in the frequency spectrum. (These transforms are generally designed to be invertible.) In the case of the Fourier transform, each basis function corresponds to a single frequency component. Continuous transforms Applied to functions of continuous arguments, Fourier-related transforms include: * Two-sided Laplace transform * Mellin transform, another closely related integral transform * Laplace transform * Fourier transform, with special cases: ** Fourier series *** When the input function/waveform is periodic, the Fourier transform output is a Dirac comb function, modulated by a discrete sequence of finite-valued coefficients that are complex-valued in general. These are called Fourier series coefficients. The term Fourier series actually ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Short-time Fourier Transform
The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers. Forward STFT Continuous-time STFT Simply, in the continuous-time case, the function to be transformed is multiplied by a window function which is nonzero for only a short period of time. The Fourier transform (a o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Sine Transform
In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and/or output data are shifted by half a sample. A family of transforms composed of sine and sine hyperbolic functions exists. These transforms are made based on the ''natural vibration'' of thin square plates with different boundary conditions. The DST is related to the discrete cosine transform (DCT), which is equivalent to a DFT of real and ''even'' functions. See the DCT article for a general discussion of how the boundary conditions relate the various DCT and DST types. Generally, the DST is derived from the DCT by replacing the Neumann condition at ''x=0'' with a Dirichlet condition. Both ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sine And Cosine Transforms
In mathematics, the Fourier sine and cosine transforms are forms of the Fourier transform that do not use complex numbers or require negative frequency. They are the forms originally used by Joseph Fourier and are still preferred in some applications, such as signal processing or statistics. Definition The Fourier sine transform of , sometimes denoted by either ^s or _s (f) , is ^s(\xi) = \int_^\infty f(t)\sin(2\pi \xi t) \,dt. If means time, then is frequency in cycles per unit time, but in the abstract, they can be any pair of variables which are dual to each other. This transform is necessarily an odd function of frequency, i.e. for all : ^s(-\xi) = - ^s(\xi). The numerical factors in the Fourier transforms are defined uniquely only by their product. Here, in order that the Fourier inversion formula not have any numerical factor, the factor of 2 appears because the sine function has norm of \tfrac. The Fourier cosine transform of , sometimes denoted by either ^c o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Fourier Transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle. The DFT is the most important discret ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Period (physics)
Period may refer to: Common uses * Era, a length or span of time * Full stop (or period), a punctuation mark Arts, entertainment, and media * Period (music), a concept in musical composition * Periodic sentence (or rhetorical period), a concept in grammar and literary style. * Period, a descriptor for a historical or period drama * Period, a timeframe in which a particular style of antique furniture or some other work of art was produced, such as the "Edwardian period" * ''Period (Another American Lie)'', a 1987 album by B.A.L.L. * ''Period'' (mixtape), a 2018 mixtape by City Girls * ''Period'', the final book in Dennis Cooper's George Miles cycle of novels Mathematics * In a repeating decimal, the length of the repetend * Period of a function, length or duration after which a function repeats itself * Period (algebraic geometry), numbers that can be expressed as integrals of algebraic differential forms over algebraically defined domains, forming a ring Science * Period (ge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Periodic Summation
In signal processing, any periodic function s_P(t) with period ''P'' can be represented by a summation of an infinite number of instances of an aperiodic function s(t), that are offset by integer multiples of ''P''. This representation is called periodic summation: :s_P(t) = \sum_^\infty s(t + nP) = \sum_^\infty s(t - nP). When s_P(t) is alternatively represented as a complex Fourier series, the Fourier coefficients are proportional to the values (or ''samples'') of the continuous Fourier transform, S(f) \triangleq \mathcal\, at intervals of \tfrac. That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of s(t) at constant intervals (''T'') is equivalent to a periodic summation of S(f), which is known as a discrete-time Fourier transform. The periodic summation of a Dirac delta function is the Dirac comb. Likewise, the periodic summation of an integrable function is its convolution with the Dirac comb. Quotient spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete-time Fourier Transform
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term ''discrete-time'' refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. Under certain theoretical conditions, described by the sampling theorem, the original continuous function can be recovered perfectly from the DTFT and thus from the original discrete samples. The DTFT itself is a continuous function of frequency, but discrete samples of it can be readily calculated via the discrete Fourier transform (DFT) (see ), which is by far the most common method of modern Fourier analysis. Both transforms are invertible. The inverse DTFT is the origin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer
A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as Computer program, programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the Computer hardware, hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of Programmable logic controller, industrial and Consumer electronics, consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Canonical Transform
In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space. The LCT generalizes the Fourier, fractional Fourier, Laplace, Gauss–Weierstrass, Bargmann and the Fresnel transforms as particular cases. The name "linear canonical transformation" is from canonical transformation, a map that preserves the symplectic structure, as SL2(R) can also be interpreted as the symplectic group Sp2, and thus LCTs are the linear maps of the time–frequency domain which preserve the symplectic form, and their action on the Hilbert space is given by the Metaplectic group. The basic properties of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier–Bros–Iagolnitzer Transform
In mathematics, the FBI transform or Fourier–Bros–Iagolnitzer transform is a generalization of the Fourier transform developed by the French mathematical physicists Jacques Bros and Daniel Iagolnitzer in order to characterise the local analyticity of functions (or distributions) on R''n''. The transform provides an alternative approach to analytic wave front sets of distributions, developed independently by the Japanese mathematicians Mikio Sato, Masaki Kashiwara and Takahiro Kawai in their approach to microlocal analysis. It can also be used to prove the analyticity of solutions of analytic elliptic partial differential equations as well as a version of the classical uniqueness theorem, strengthening the Cauchy–Kowalevski theorem, due to the Swedish mathematician Erik Albert Holmgren (1872–1943). Definitions The Fourier transform of a Schwartz function ''f'' in ''S''(R''n'') is defined by : (f)(t) = (2\pi)^ \int_f(x) e^\, dx. The FBI transform of ''f'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hankel Transform
In mathematics, the Hankel transform expresses any given function ''f''(''r'') as the weighted sum of an infinite number of Bessel functions of the first kind . The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor ''k'' along the ''r'' axis. The necessary coefficient of each Bessel function in the sum, as a function of the scaling factor ''k'' constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval. Definition The Hankel transform of order \nu of a function ''f''(''r'') is given by : F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) \,r\,\mathrmr, where J_\nu is the Bessel function of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |