HOME
*





Chirplet Transform
In signal processing, the chirplet transform is an inner product of an input signal with a family of analysis primitives called chirplets.S. Mann and S. Haykin,The Chirplet transform: A generalization of Gabor's logon transform, ''Proc. Vision Interface 1991'', 205–212 (3–7 June 1991).D. Mihovilovic and R. N. Bracewell, "Adaptive chirplet representation of signals in the time–frequency plane," ''Electronics Letters'' 27 (13), 1159–1161 (20 June 1991). Similar to the wavelet transform, chirplets are usually generated from (or can be expressed as being from) a single ''mother chirplet'' (analogous to the so-called '' mother wavelet'' of wavelet theory). Definitions The term ''chirplet transform'' was coined by Steve Mann, as the title of the first published paper on chirplets. The term ''chirplet'' itself (apart from chirplet transform) was also used by Steve Mann, Domingo Mihovilovic, and Ronald Bracewell to describe a windowed portion of a chirp function. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ronald N
Ronald is a masculine given name derived from the Old Norse ''Rögnvaldr'', Hanks; Hardcastle; Hodges (2006) p. 234; Hanks; Hodges (2003) § Ronald. or possibly from Old English '' Regenweald''. In some cases ''Ronald'' is an Anglicised form of the Gaelic '' Raghnall'', a name likewise derived from ''Rögnvaldr''. The latter name is composed of the Old Norse elements ''regin'' ("advice", "decision") and ''valdr'' ("ruler"). ''Ronald'' was originally used in England and Scotland, where Scandinavian influences were once substantial, although now the name is common throughout the English-speaking world. A short form of ''Ronald'' is ''Ron''. Pet forms of ''Ronald'' include ''Roni'' and ''Ronnie''. ''Ronalda'' and ''Rhonda'' are feminine forms of ''Ronald''. '' Rhona'', a modern name apparently only dating back to the late nineteenth century, may have originated as a feminine form of ''Ronald''. Hanks; Hardcastle; Hodges (2006) pp. 230, 408; Hanks; Hodges (2003) § Rhona. The names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time–frequency Analysis
In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains ''simultaneously,'' using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform. The mathematical motivation for this study is that functions and their transform representation are tightly connected, and they can be understood better by studying them jointly, as a two-dimensional object, rather than separately. A simple example is that the 4-fold periodicity of the Fourier transform – and the fact that two-fold Fourier transform reverses direction – can be in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transforms
Transform may refer to: Arts and entertainment * Transform (scratch), a type of scratch used by turntablists * ''Transform'' (Alva Noto album), 2001 * ''Transform'' (Howard Jones album) or the title song, 2019 * ''Transform'' (Powerman 5000 album) or the title song, 2003 * ''Transform'' (Rebecca St. James album), 2000 * ''Transform'' (single album), by Teen Top, or the title song, 2011 *"Transform", a song by Daniel Caesar from ''Freudian'', 2017 *"Transform", a song by Your Memorial from ''Redirect'', 2012 Mathematics, science, and technology Mathematics * Tensor transformation law, a defining property of tensors *Tensor product model transformation, numerical method applied to control theory *Transformation (function), concerning functions from sets to themselves * Transform theory, theory of integral transforms ** List of transforms, a list of mathematical transforms **Integral transform, a type of mathematical transform Computer graphics *Transform coding, a type of data comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fractional Fourier Transform
In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the ''n''-th power, where ''n'' need not be an integer — thus, it can transform a function to any ''intermediate'' domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition. The FRFT can be used to define fractional convolution, correlation, and other operations, and can also be further generalized into the linear canonical transformation (LCT). An early definition of the FRFT was introduced by Edward Condon, Condon, by solving for the Green's function for phase-space rotations, and also by Namias, generalizing work of Norbert Wiener, Wiener on Hermite polynomials. However, it was not widely recognized in signal processing until it was independently reintroduced around 1993 by severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelet Transform
In mathematics, a wavelet series is a representation of a square-integrable ( real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. Definition A function \psi \,\in\, L^2(\mathbb) is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space L^2\left(\mathbb\right) of square integrable functions. The Hilbert basis is constructed as the family of functions \ by means of dyadic translations and dilations of \psi\,, :\psi_(x) = 2^\frac \psi\left(2^jx - k\right)\, for integers j,\, k \,\in\, \mathbb. If under the standard inner product on L^2\left(\mathbb\right), :\langle f, g\rangle = \int_^\infty f(x)\overlinedx this family is orthonormal, it is an orthonormal system: :\begin \langle\psi_,\psi_\rangle &= \int_^\infty \psi_(x)\overli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Short-time Fourier Transform
The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers. Forward STFT Continuous-time STFT Simply, in the continuous-time case, the function to be transformed is multiplied by a window function which is nonzero for only a short period of time. The Fourier transform (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time–frequency Representation
A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD. TFRs are often complex-valued fields over time and frequency, where the modulus of the field represents either amplitude or "energy density" (the concentration of the root mean square over time and frequency), and the argument of the field represents phase. Background and motivation A signal, as a function of time, may be considered as a representation with perfect ''time resolution''. In contrast, the magnitude of the Fourier transform (FT) of the signal may be considered as a representation with perfect ''spectral resolution'' but with no time information because the magnitude of the FT conveys frequency content but it fails to convey when, in ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters ** Elliptic Gauss sum, an analog of a Gauss sum ** Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions * Gauss's criterion – described oEncyclopedia of Mathematics* Gauss's hypergeometric theorem, an identity on hypergeometric series * Gauss plane Statistics *Gauss– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pete With Deltyburn Abakography Robot Chirplet C
Pete or Petes or ''variation'', may refer to: People * Pete (given name) * Pete (nickname) * Pete (surname) Fictional characters * Pete (Disney), a cartoon character in the ''Mickey Mouse'' universe * Pete the Pup (a.k.a. 'Petey'), a character (played by several dogs) in Hal Roach's ''Our Gang'' comedies Places * Pete, Zanzibar, a village in Tanzania * Pete, the Hungarian name for Petea village, Dorolț Commune, Satu Mare County, Romania * Petes, Gotland, Visby, Gotland, Sweden * Petes Hill, a summit in the Adirondack Mountains, New York State, USA * Petes Creek, a tributary of the Sacandaga River, located in New York State, USA Sports and athletics * The Pete, Petersen Events Center, athletics complex and basketball arena on the campus of the University of Pittsburgh * Pete the Penguin, one of the two mascots of Youngstown State University * Purdue Pete, bookstore logo turned unofficial mascot of Purdue University * A member of the Peterborough Petes junior ice hockey tea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]