Femtosecond Pulse Shaping
In optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Introduction Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc. Based on the requirement, pulse shapers may be designed to stretch, compress or produce a train of pulses from a single input pulse. The ability to produce trains of pulses with femtosecond or picosecond separation implies transmission of optical information at very high speeds. In ultrafast laser science pulse shapers are often used as a complement to pulse compressors in order to fine-tune high-order dispersion compensation and achieve transform-limited few-cycle optical pulses. Techniques A pulse shaper may be visual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes the behaviour of visible light, visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the Classical electromagnetism, classical electromagnetic description of light, however complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of Ray (optics), rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Journal Of Physics B
The ''Journal of Physics B: Atomic, Molecular and Optical Physics'' is a biweekly peer-reviewed scientific journal published by IOP Publishing. It was established in 1968 from the division of the earlier title, '' Proceedings of the Physical Society''. In 2006, the '' Journal of Optics B: Quantum and Semiclassical Optics'' was merged with the ''Journal of Physics B''. The editor-in-chief is Marc Vrakking (Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy). Scope The journal covers research on atomic, molecular, and optical physics. Topics include atomic and molecular structure, spectra and collisions, ultracold matter, quantum optics and non linear optics, quantum information, laser physics, intense laser fields, ultrafast and x-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays hav ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Chirped Mirror
A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack). Chirped mirrors are used in applications like lasers to reflect a wider range of light wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion of wavelengths that can be created by some optical elements. Chirped mirrors are also found in structurally colored biological systems, including the shiny golden and silver color of certain beetles' elytra, e.g. those of the Ruteline genus ''Chrysina''. In these cases, the chirped mirror generates complex color (such as gold or silver) when illuminated by white light by simultaneously reflecting a broad range of monochromatic colors. Simple explanation An ordinary dielectric mirror is made to reflect a single frequency of light. The dielectric mirror is made of transparent materials that are uniformly layered at a depth of 1/4 the wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Acousto-optic Programmable Dispersive Filter
An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of Ultrashort pulse, ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR (up to 4 μm) and calomel in the MIR (3–20 μm). Recently introduced lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of few-cycle optical pulses, as a part of pulse-measurement schemes and multi-dimensional spectroscopy techniques. Although sharing a lot in principle of operation with an ''Acousto-optic effect#Acousto-optic filter, acousto-optic tunable filter'', the AOPDF should not be confused with it, since in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Multiphoton Intrapulse Interference Phase Scan
Multiphoton intrapulse interference phase scan (MIIPS) is a method used in ultrashort laser technology that simultaneously measures (phase characterization), and compensates (phase correction) femtosecond laser pulses using an adaptive pulse shaper. When an ultrashort laser pulse reaches a duration of less than a few hundred femtosecond, it becomes critical to characterize its duration, its temporal intensity curve, or its electric field as a function of time. Classical photodetectors measuring the intensity of light are still too slow to allow for a direct measurement, even with the fastest photodiodes or streak cameras. Other means have been developed based on quasi instantaneous non linear optical effects such as autocorrelation, FROG, SPIDER, etc. However, these can only measure the pulse characteristics but not correct for defects in order to make the pulse as short as possible. For instance, the pulse could be linearly chirped or present higher order group delay dispersion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Review Of Scientific Instruments
''Review of Scientific Instruments'' is a monthly peer-reviewed scientific journal published by the American Institute of Physics. Its area of interest is scientific instruments, apparatus, and techniques. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 1.587. Editors * 2024-Present: Réjean Boivin * 2024: Robert Kaita (Interim Editor in Chief) * 2016-2023: Richard C. Pardo * 2000-2015: Albert T. Macrander * 1979-1999: Thomas H. Braid * 1954-1978: J. B. Horner Kuper * 1940-1954: Gaylord P. Harnwell * 1940: Joseph A. Becker * 1932-1939: F. K. Richtmyer * 1930-1932: Paul D. Foote References External links * Chemistry journals Physics journals Research methods journals American Institute ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Spatial Light Modulator
A spatial light modulator (SLM) is a device that can control the intensity, phase, or polarization of light in a spatially varying manner. A simple example is an overhead projector transparency. Usually when the term SLM is used, it means that the transparency can be controlled by a computer. SLMs are primarily marketed for image projection, displays devices, and maskless lithography. SLMs are also used in optical computing and holographic optical tweezers. Usually, an SLM modulates the intensity of the light beam. However, it is also possible to produce devices that modulate the phase of the beam or both the intensity and the phase simultaneously. It is also possible to produce devices that modulate the polarization of the beam, and modulate the polarization, phase, and intensity simultaneously. SLMs are used extensively in holographic data storage setups to encode information into a laser beam similarly to the way a transparency does for an overhead projector. They can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Chirped Pulse Amplification
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances. CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s, work for which they received the Nobel Prize in Physics in 2018. CPA is the technique used by most high-powered lasers in the world. Background Before the introduction of CPA in the mid-1980s, the peak power of laser pulses was limited because a laser pulse at intensities of gigawatts per square centimeter causes serious damage to the gain medium through nonlinear processes such as self-focusing. For example, some of the most powerful compressed CPA laser beams, even in an unfocused large aperture (afte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
AOPDF
An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR (up to 4 μm) and calomel in the MIR (3–20 μm). Recently introduced lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of few-cycle optical pulses, as a part of pulse-measurement schemes and multi-dimensional spectroscopy techniques. Although sharing a lot in principle of operation with an '' acousto-optic tunable filter'', the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Chirped Mirror
A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack). Chirped mirrors are used in applications like lasers to reflect a wider range of light wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion of wavelengths that can be created by some optical elements. Chirped mirrors are also found in structurally colored biological systems, including the shiny golden and silver color of certain beetles' elytra, e.g. those of the Ruteline genus ''Chrysina''. In these cases, the chirped mirror generates complex color (such as gold or silver) when illuminated by white light by simultaneously reflecting a broad range of monochromatic colors. Simple explanation An ordinary dielectric mirror is made to reflect a single frequency of light. The dielectric mirror is made of transparent materials that are uniformly layered at a depth of 1/4 the wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Dispersion (optics)
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium. Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, and in gravity waves (ocean waves). Within optics, dispersion is a property of telecommunication signals along transmission lines (such as microwaves in coaxial cable) or the Pulse (signal processing), pulses of light in optical fiber. In optics, one important and familiar consequence of dispersion is the change in the angle of refraction of different colors of light, as seen in the spectrum produced by a dispersive Prism (optics), prism and in chromatic aberration ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |