Fedosov Manifold
In mathematics, a Fedosov manifold is a symplectic manifold with a compatible torsion-free connection, that is, a triple (''M'', ω, ∇), where (''M'', ω) is a symplectic manifold (that is, \omega is a symplectic form, a non-degenerate closed exterior 2-form, on a C^-manifold ''M''), and ∇ is a symplectic torsion-free connection on M. (A connection ∇ is called compatible or symplectic if ''X'' ⋅ ω(''Y,Z'') = ω(∇''X''''Y'',''Z'') + ω(''Y'',∇''X''''Z'') for all vector fields ''X,Y,Z'' ∈ Γ(T''M''). In other words, the symplectic form is parallel with respect to the connection, i.e., its covariant derivative vanishes.) Note that every symplectic manifold admits a symplectic torsion-free connection. Cover the manifold with Darboux charts and on each chart define a connection ∇ with Christoffel symbol \Gamma^i_=0. Then choose a partition of unity In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit inter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. Differential geometry embraces severa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Form
In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping that is ; Bilinear: Linear in each argument separately; ; Alternating: holds for all ; and ; Non-degenerate: for all implies that . If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, ''ω'' can be represented by a matrix. The conditions above are equivalent to this matrix being skew-symmetric, nonsingular, and hollow (all diagonal entries are zero). This should not be confused with a symplectic matrix, which represents a symplectic transformation of the space. If ''V'' is finite-dimensional, then its dimension must necessarily be even sinc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component (dependent on the embedding) and the intrinsic covariant derivative component. The name is motivated by the importance of changes of coordinate in physics: the covariant derivative transforms covariantly under a general coordinate transformation, that is, linearly via the Jacobia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Darboux Chart
Darboux's theorem is a theorem in the mathematics, mathematical field of differential geometry and more specifically differential forms, partially generalizing the Frobenius integration theorem. It is a foundational result in several fields, the chief among them being symplectic geometry. The theorem is named after Jean Gaston Darboux who established it as the solution of the Johann Friedrich Pfaff, Pfaff problem. One of the many consequences of the theorem is that any two symplectic manifolds of the same dimension are locally symplectomorphism, symplectomorphic to one another. That is, every 2''n''-dimensional symplectic manifold can be made to look locally like the linear symplectic space C''n'' with its canonical symplectic form. There is also an analogous consequence of the theorem as applied to contact geometry. Statement and first consequences The precise statement is as follows. Suppose that \theta is a differential 1-form on an ''n'' dimensional manifold, such that \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Of Unity
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval ,1such that for every point x\in X: * there is a neighbourhood of where all but a finite number of the functions of are 0, and * the sum of all the function values at is 1, i.e., \sum_ \rho(x) = 1. Partitions of unity are useful because they often allow one to extend local constructions to the whole space. They are also important in the interpolation of data, in signal processing, and the theory of spline functions. Existence The existence of partitions of unity assumes two distinct forms: # Given any open cover \_ of a space, there exists a partition \_ indexed ''over the same set'' such that supp \rho_i \subseteq U_i. Such a partition is said to be subordinate to the open cover \_i. # If the space is locally-compact, given any open cover \_ of a space, there exists a partition \_ indexed over a possibly distinct index set such that each has co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boris Fedosov
Boris may refer to: People * Boris (given name), a male given name *:''See'': List of people with given name Boris * Boris (surname) * Boris I of Bulgaria (died 907), the first Christian ruler of the First Bulgarian Empire, canonized after his death * Boris II of Bulgaria (c. 931–977), ruler of the First Bulgarian Empire * Boris III of Bulgaria (1894–1943), ruler of the Kingdom of Bulgaria in the first half of the 20th century * Boris, Prince of Tarnovo (born 1997), Spanish-born Bulgarian royal * Boris and Gleb (died 1015), the first saints canonized in Kievan Rus * Boris (singer) (born 1965), pseudonym of French singer Philippe Dhondt Arts and media * Boris (band), a Japanese experimental rock trio * ''Boris'' (EP), by Yezda Urfa, 1975 * "Boris" (song), by the Melvins, 1991 * ''Boris'' (TV series), a 2007–2009 Italian comedy series * '' Boris: The Film'', a 2011 Italian film based on the TV series * '' Boris: The Rise of Boris Johnson'', a 2006 biography by Andrew Gims ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deformation Quantization
Deformation can refer to: * Deformation (engineering), changes in an object's shape or form due to the application of a force or forces. ** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies. * Deformation (meteorology), a measure of the rate at which the shapes of clouds and other fluid bodies change. * Deformation (mathematics), the study of conditions leading to slightly different solutions of mathematical equations, models and problems. * Deformation (volcanology), a measure of the rate at which the shapes of volcanoes change. * Deformation (biology), a harmful mutation or other deformation in an organism. See also * Deformity (medicine), a major difference in the shape of a body part or organ compared to its common or average shape. * Plasticity (physics), the study of the non-reversible deformation of materials subjected to forces. * Super-deformed Chibi, also known as super deformation, or S.D. is a style of caricatur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |