Estimation
   HOME
*



picture info

Estimation
Estimation (or estimating) is the process of finding an estimate or approximation, which is a value that is usable for some purpose even if input data may be incomplete, uncertain, or unstable. The value is nonetheless usable because it is derived from the best information available.C. Lon Enloe, Elizabeth Garnett, Jonathan Miles, ''Physical Science: What the Technology Professional Needs to Know'' (2000), p. 47. Typically, estimation involves "using the value of a statistic derived from a sample to estimate the value of a corresponding population parameter".Raymond A. Kent, "Estimation", ''Data Construction and Data Analysis for Survey Research'' (2001), p. 157. The sample provides information that can be projected, through various formal or informal processes, to determine a range most likely to describe the missing information. An estimate that turns out to be incorrect will be an overestimate if the estimate exceeds the actual result and an underestimate if the estimate fall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kalman Filter
For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory. This digital filter is sometimes termed the ''Stratonovich–Kalman–Bucy filter'' because it is a special case of a more general, nonlinear filter developed somewhat earlier by the Soviet mathematician Ruslan Stratonovich. In fact, some of the special case linear filter's equations appeared in papers by Stratonovich that were published before summer 1960, when Kalman met with Stratonovich during a conference in Moscow. Kalman filtering has numerous tech ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moving Horizon Estimation
Moving horizon estimation (MHE) is an optimization approach that uses a series of measurements observed over time, containing noise (random variations) and other inaccuracies, and produces estimates of unknown variables or parameters. Unlike deterministic approaches, MHE requires an iterative approach that relies on linear programming or nonlinear programming solvers to find a solution. MHE reduces to the Kalman filter under certain simplifying conditions. A critical evaluation of the extended Kalman filter and the MHE found that the MHE improved performance at the cost of increased computational expense. Because of the computational expense, MHE has generally been applied to systems where there are greater computational resources and moderate to slow system dynamics. However, in the literature there are some methods to accelerate this method. Overview The application of MHE is generally to estimate measured or unmeasured states of dynamical systems. Initial conditions and paramet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Estimation Theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An ''estimator'' attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered: * The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest * The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector. Examples For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation Theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An ''estimator'' attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered: * The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest * The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector. Examples For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Estimation Statistics
Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. Estimation statistics is sometimes referred to as ''the new statistics''. The primary aim of estimation methods is to report an effect size (a point estimate) along with its confidence interval, the latter of which is related to the precision of the estimate. The confidence interval summarizes a range of likely values of the underlying population effect. Proponents of estimation see reporting a ''P'' value as an unhelpful distraction from the important business of reporting an effect size with its confidence intervals, and believe that estimat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation (project Management)
In project management (e.g., for engineering), accurate estimates are the basis of sound project planning. Many processes have been developed to aid engineers in making accurate estimates, such as *Analogy based estimation * Compartmentalization (i.e., breakdown of tasks) *Cost estimate *Delphi method *Documenting estimation results *Educated assumptions *Estimating each task *Examining historical data *Identifying dependencies *Parametric estimating *Risk assessment *Structured planning Popular estimation processes for software projects include: * Cocomo * Cosysmo * Event chain methodology * Function points * Planning poker * Program Evaluation and Review Technique (PERT) * Proxy-based estimating (PROBE) (from the Personal Software Process) * The Planning Game (from Extreme Programming) * Weighted Micro Function Points (WMFP) * Wideband Delphi See also * Estimation in software engineering * Software development effort estimation * Comparison of development estimation soft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mark And Recapture
Mark and recapture is a method commonly used in ecology to estimate an animal population's size where it is impractical to count every individual. A portion of the population is captured, marked, and released. Later, another portion will be captured and the number of marked individuals within the sample is counted. Since the number of marked individuals within the second sample should be proportional to the number of marked individuals in the whole population, an estimate of the total population size can be obtained by dividing the number of marked individuals by the proportion of marked individuals in the second sample. Other names for this method, or closely related methods, include capture-recapture, capture-mark-recapture, mark-recapture, sight-resight, mark-release-recapture, multiple systems estimation, band recovery, the Petersen method, and the Lincoln method. Another major application for these methods is in epidemiology, where they are used to estimate the completeness of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point Estimate
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference. More generally, a point estimator can be contrasted with a set estimator. Examples are given by confidence sets or credible sets. A point estimator can also be contrasted with a distribution estimator. Examples are given by confidence distributions, randomized estimators, and Bayesian posteriors. Properties of point estimates Biasness “Bias” is defined as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values. "Single value" does not necessarily mean "single number", but includes vector valued or function valued estimators. ''Estimation theory'' is concerned with the properties of estimators; that is, with defining properties that can be used to compare different estimators (different rules for creating estimates) for the same quantity, based on the same data. Such properties can be used to determine the best rules to use under given circumstances. However, in robust statistics, statistica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermi Problem
In physics or engineering education, a Fermi problem, Fermi quiz, Fermi question, Fermi estimate, order-of-magnitude problem, order-of-magnitude estimate, or order estimation is an estimation problem designed to teach dimensional analysis or approximation of extreme scientific calculations, and such a problem is usually a back-of-the-envelope calculation. The estimation technique is named after physicist Enrico Fermi as he was known for his ability to make good approximate calculations with little or no actual data. Fermi problems typically involve making justified guesses about quantities and their variance or lower and upper bounds. In some cases, order-of-magnitude estimates can also be derived using dimensional analysis. Historical background An example is Enrico Fermi's estimate of the strength of the atomic bomb that detonated at the Trinity test, based on the distance traveled by pieces of paper he dropped from his hand during the blast. Fermi's estimate of 10 kilot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interval Estimate
In statistics, interval estimation is the use of sample data to estimate an '' interval'' of plausible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are '' confidence intervals'' (a frequentist method) and ''credible intervals'' (a Bayesian method); less common forms include '' likelihood intervals'' and '' fiducial intervals''. Other forms of statistical intervals include '' tolerance intervals'' (covering a proportion of a sampled population) and '' prediction intervals'' (an estimate of a future observation, used mainly in regression analysis). Non-statistical methods that can lead to interval estimates include fuzzy logic. Discussion The scientific problems associated with interval estimation may be summarised as follows: :*When interval estimates are reported, they should have a commonly held interpretation in the scientific community and more widely. In this regard, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal Processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, Data storage, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal. History According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s. In 1948, Claude Shannon wrote the influential paper "A Mathematical Theory of Communication" which was published in the Bell System Technical Journal. The paper laid the groundwork for later development of information c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]