Elliptic Gamma Function
   HOME





Elliptic Gamma Function
In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by , and can be expressed in terms of the triple gamma function. It is given by :\Gamma (z;p,q) = \prod_^\infty \prod_^\infty \frac. It obeys several identities: :\Gamma(z;p,q)=\frac\, :\Gamma(pz;p,q)=\theta (z;q) \Gamma (z; p,q)\, and :\Gamma(qz;p,q)=\theta (z;p) \Gamma (z; p,q)\, where θ is the q-theta function. When p=0, it essentially reduces to the infinite q-Pochhammer symbol In the mathematical field of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer ...: :\Gamma(z;0,q)=\frac. Multiplication Formula Define :\tilde(z;p,q):=\frac(\theta(q;p))^\prod_^\infty \prod_^\infty \frac. Then the following formula hol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-gamma Function
In q-analog theory, the q-gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by . It is given by \Gamma_q(x) = (1-q)^\prod_^\infty \frac=(1-q)^\,\frac when , q, 1. Here (\cdot;\cdot)_\infty is the infinite q-Pochhammer symbol. The q-gamma function satisfies the functional equation \Gamma_q(x+1) = \frac\Gamma_q(x)= q\Gamma_q(x) In addition, the q-gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey (). For non-negative integers n, \Gamma_q(n)= -1q! where cdotq is the q-factorial function. Thus the q-gamma function can be considered as an extension of the q-factorial function to the real numbers. The relation to the ordinary gamma function is made explicit in the limit \lim_ \Gamma_q(x) = \Gamma(x). There is a simple proof of this limit by Gosper. See the appendix of (). Transformation properties The q-gamma function satis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. ''q''-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and dynamical systems results from the fact that many fractal patterns have the symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triple Gamma Function
In mathematics, the multiple gamma function \Gamma_N is a generalization of the Euler gamma function and the Barnes G-function. The double gamma function was studied by . At the end of this paper he mentioned the existence of multiple gamma functions generalizing it, and studied these further in . Double gamma functions \Gamma_2 are closely related to the q-gamma function, and triple gamma functions \Gamma_3 are related to the elliptic gamma function. Definition For \Re a_i>0, let :\Gamma_N(w\mid a_1,\ldots,a_N) = \exp\left(\left.\frac \zeta_N(s,w \mid a_1, \ldots, a_N) \_ \right)\ , where \zeta_N is the Barnes zeta function. (This differs by a constant from Barnes's original definition.) Properties Considered as a meromorphic function of w, \Gamma_N(w\mid a_1,\ldots,a_N) has no zeros. It has poles at w= -\sum_^N n_ia_i for non-negative integers n_i. These poles are simple unless some of them coincide. Up to multiplication by the exponential of a polynomial, \Gamma_N(w\mid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Q-theta Function
In mathematics, the ''q''-theta function (or modified Jacobi theta function) is a type of ''q''-series which is used to define elliptic hypergeometric series. It is given by :\theta(z;q):=\prod_^\infty (1-q^nz)\left(1-q^/z\right) where one takes 0 ≤ , ''q'',  < 1. It obeys the identities :\theta(z;q)=\theta\left(\frac;q\right)=-z\theta\left(\frac;q\right). It may also be expressed as: :\theta(z;q)=(z;q)_\infty (q/z;q)_\infty where (\cdot \cdot )_\infty is the .


See also

* *

Q-Pochhammer Symbol
In the mathematical field of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Mathematical Physics
The ''Journal of Mathematical Physics'' is a peer-reviewed journal published monthly by the American Institute of Physics devoted to the publication of papers in mathematical physics. The journal was first published bimonthly beginning in January 1960; it became a monthly publication in 1963. The current editor is Jan Philip Solovej from University of Copenhagen The University of Copenhagen (, KU) is a public university, public research university in Copenhagen, Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in Scandinavia, after Uppsala University. .... Its 2018 Impact Factor is 1.355 Abstracting and indexing This journal is indexed by the following services:Wellesley College Library
2013.


References


External ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Gamma And Related Functions
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally represents a voiced velar fricative , except before either of the two front vowels (/e/, /i/), where it represents a voiced palatal fricative ; while /g/ in foreign words is instead commonly transcribed as γκ). In the International Phonetic Alphabet and other modern Latin-alphabet based phonetic notations, it represents the voiced velar fricative. History The Greek letter Gamma Γ is a grapheme derived from the Phoenician letter (''gīml'') which was rotated from the right-to-left script of Canaanite to accommodate the Greek language's writing system of left-to-right. The Canaanite grapheme represented the /g/ phoneme in the Canaanite language, and as such is cognate with ''gimel'' ג of the Hebrew alphabet. Based on its name, the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]