Ehrhart Polynomial
   HOME
*



picture info

Ehrhart Polynomial
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane. These polynomials are named after Eugène Ehrhart who studied them in the 1960s. Definition Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in . More formally, consider a lattice (group), lattice \mathcal in Euclidean space \R^n and a -dimensional polytope in \R^n with the property that all vertices of the polytope are points of the lattice. (A common example is \mathcal = \Z^n and a polytope for which all vertices have integer coordinates.) For any positive integer , let be the -fold dilation of (the polytope formed by multiplying each vertex coordinate, in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unit Cube
A unit cube, more formally a cube of side 1, is a cube whose sides are 1 unit long.. See in particulap. 671. The volume of a 3-dimensional unit cube is 1 cubic unit, and its total surface area is 6 square units.. Unit hypercube The term ''unit cube'' or unit hypercube is also used for hypercubes, or "cubes" in ''n''-dimensional spaces, for values of ''n'' other than 3 and edge length 1. Sometimes the term "unit cube" refers in specific to the set , 1sup>''n'' of all ''n''-tuples of numbers in the interval , 1 The length of the longest diagonal of a unit hypercube of ''n'' dimensions is \sqrt n, the square root of ''n'' and the (Euclidean) length of the vector (1,1,1,....1,1) in ''n''-dimensional space. See also *Doubling the cube * K-cell * Robbins constant, the average distance between two random points in a unit cube * Tychonoff cube, an infinite-dimensional analogue of the unit cube *Unit square *Unit sphere In mathematics, a unit sphere is simply a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the ''formal'' power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (excep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valuation (measure Theory)
In measure theory, or at least in the approach to it via the domain theory, a valuation is a Map (mathematics), map from the class of open sets of a topological space to the set of positive number, positive real numbers including infinity, with certain properties. It is a concept closely related to that of a Measure (mathematics), measure, and as such, it finds applications in measure theory, probability theory, and theoretical computer science. Domain/Measure theory definition Let \scriptstyle (X,\mathcal) be a topological space: a valuation is any set function v : \mathcal \to \R^+ \cup \ satisfying the following three properties \begin v(\varnothing) = 0 & & \scriptstyle\\ v(U)\leq v(V) & \mbox~U\subseteq V\quad U,V\in\mathcal & \scriptstyle\\ v(U\cup V)+ v(U\cap V) = v(U)+v(V) & \forall U,V\in\mathcal & \scriptstyle\, \end The definition immediately shows the relationship between a valuation and a measure: the properties of the two mathematical object are often very similar i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crelle's Journal
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer ( Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–192 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martin Kneser
Martin Kneser (21 January 1928 – 16 February 2004) was a German mathematician. His father Hellmuth Kneser and grandfather Adolf Kneser were also mathematicians. He obtained his PhD in 1950 from Humboldt University of Berlin with the dissertation: ''Über den Rand von Parallelkörpern''. His advisor was Erhard Schmidt. His name has been given to Kneser graphs which he studied in 1955. He also gave a simplified proof of the Fundamental theorem of algebra. Kneser was an Invited Speaker of the ICM in 1962 at Stockholm. His main publications were on quadratic forms and algebraic groups. See also * Approximation in algebraic groups * Betke–Kneser theorem * Kneser–Tits conjecture *Kneser's theorem (combinatorics) In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 ... * Kneser g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi ( Greek lower-case letter chi). The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic \chi was classically defined for the surfaces of polyhedra, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The definition of length (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. In ancient times, volume is measured using similar-shaped natural containers and later on, standardized containers. Some simple three-dimensional shapes can have its volume easily calculated using arithmetic formulas. Volumes of more complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. Zero-, one- and two-dimensional objects have no volume; in fourth and higher dimensions, an analogous concept to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-polynomial
In mathematics, a quasi-polynomial (pseudo-polynomial) is a generalization of polynomials. While the coefficients of a polynomial come from a ring, the coefficients of quasi-polynomials are instead periodic functions with integral period. Quasi-polynomials appear throughout much of combinatorics as the enumerators for various objects. A quasi-polynomial can be written as q(k) = c_d(k) k^d + c_(k) k^ + \cdots + c_0(k), where c_i(k) is a periodic function with integral period. If c_d(k) is not identically zero, then the degree of q is d. Equivalently, a function f \colon \mathbb \to \mathbb is a quasi-polynomial if there exist polynomials p_0, \dots, p_ such that f(n) = p_i(n) when i \equiv n \bmod s. The polynomials p_i are called the constituents of f. Examples * Given a d-dimensional polytope P with rational vertices v_1,\dots,v_n, define tP to be the convex hull of tv_1,\dots,tv_n. The function L(P,t) = \#(tP \cap \mathbb^d) is a quasi-polynomial in t of degree d. In this cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Pyramid
In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid, the Johnson solid General square pyramid A possibly oblique square pyramid with base length ''l'' and perpendicular height ''h'' has volume: :V=\frac l^2 h. Right square pyramid In a right square pyramid, all the lateral edges have the same length, and the sides other than the base are congruent isosceles triangles. A right square pyramid with base length ''l'' and height ''h'' has surface area and volume: :A=l^2+l\sqrt, :V=\frac l^2 h. The lateral edge length is: :\sqrt; the slant height is: :\sqrt. The dihedral angles are: :*between the base and a side: :::\arctan \left(\right); :*between two sides: :::\arccos \left(\right). Equilateral square pyramid, Johnson solid J1 If all edges have the same length, then the sides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]