Martin Kneser
   HOME
*





Martin Kneser
Martin Kneser (21 January 1928 – 16 February 2004) was a German mathematician. His father Hellmuth Kneser and grandfather Adolf Kneser were also mathematicians. He obtained his PhD in 1950 from Humboldt University of Berlin with the dissertation: ''Über den Rand von Parallelkörpern''. His advisor was Erhard Schmidt. His name has been given to Kneser graphs which he studied in 1955. He also gave a simplified proof of the Fundamental theorem of algebra. Kneser was an Invited Speaker of the ICM in 1962 at Stockholm. His main publications were on quadratic forms and algebraic groups. See also * Approximation in algebraic groups * Betke–Kneser theorem * Kneser–Tits conjecture *Kneser's theorem (combinatorics) In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 ... * Kneser g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Göttingen
The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded in 1734 by George II, King of Great Britain and Elector of Hanover, and starting classes in 1737, the Georgia Augusta was conceived to promote the ideals of the Enlightenment. It is the oldest university in the state of Lower Saxony and the largest in student enrollment, which stands at around 31,600. Home to many noted figures, it represents one of Germany's historic and traditional institutions. According to an official exhibition held by the University of Göttingen in 2002, 44 Nobel Prize winners had been affiliated with the University of Göttingen as alumni, faculty members or researchers by that year alone. The University of Göttingen was previously supported by the German Universities Excellence Initiative, holds memberships ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Forms
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic form is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theorists
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic objects in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2004 Deaths
This is a list of deaths of notable people, organised by year. New deaths articles are added to their respective month (e.g., Deaths in ) and then linked here. 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 See also * Lists of deaths by day The following pages, corresponding to the Gregorian calendar, list the historical events, births, deaths, and holidays and observances of the specified day of the year: Footnotes See also * Leap year * List of calendars * List of non-standard ... * Deaths by year {{DEFAULTSORT:deaths by year ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1928 Births
Nineteen or 19 may refer to: * 19 (number), the natural number following 18 and preceding 20 * one of the years 19 BC, AD 19, 1919, 2019 Films * ''19'' (film), a 2001 Japanese film * ''Nineteen'' (film), a 1987 science fiction film Music * 19 (band), a Japanese pop music duo Albums * ''19'' (Adele album), 2008 * ''19'', a 2003 album by Alsou * ''19'', a 2006 album by Evan Yo * ''19'', a 2018 album by MHD * ''19'', one half of the double album ''63/19'' by Kool A.D. * ''Number Nineteen'', a 1971 album by American jazz pianist Mal Waldron * ''XIX'' (EP), a 2019 EP by 1the9 Songs * "19" (song), a 1985 song by British musician Paul Hardcastle. * "Nineteen", a song by Bad4Good from the 1992 album '' Refugee'' * "Nineteen", a song by Karma to Burn from the 2001 album ''Almost Heathen''. * "Nineteen" (song), a 2007 song by American singer Billy Ray Cyrus. * "Nineteen", a song by Tegan and Sara from the 2007 album '' The Con''. * "XIX" (song), a 2014 song by Slipk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kneser Graphs
In graph theory, the Kneser graph (alternatively ) is the graph whose vertices correspond to the -element subsets of a set of elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956. Examples The Kneser graph is the complete graph on vertices. The Kneser graph is the complement of the line graph of the complete graph on vertices. The Kneser graph is the odd graph ; in particular is the Petersen graph (see top right figure). The Kneser graph , visualized on the right. Properties Basic properties The Kneser graph K(n,k) has \tbinom vertices. Each vertex has exactly \tbinom neighbors. The Kneser graph is vertex transitive and arc transitive. When k=2, the Kneser graph is a strongly regular graph, with parameters ( \tbinom, \tbinom, \tbinom, \tbinom ). However, it is not strongly regular when k>2, as different pairs of nonadjacent verti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kneser's Theorem (combinatorics)
In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 and 1956. They may be regarded as extensions of the Cauchy–Davenport theorem, which also concerns sumsets in groups but is restricted to groups whose order is a prime number. The first three statements deal with sumsets whose size (in various senses) is strictly smaller than the sum of the size of the summands. The last statement deals with the case of equality for Haar measure in connected compact abelian groups. Strict inequality If G is an abelian group and C is a subset of G , the group H(C):= \ is the ''stabilizer'' of C . Cardinality Let G be an abelian group. If A and B are nonempty finite subsets of G satisfying , A + B, < , A, + , B, and H is the stabilizer of A + B
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kneser–Tits Conjecture
In mathematics, the Kneser–Tits problem, introduced by based on a suggestion by Martin Kneser, asks whether the Whitehead group ''W''(''G'',''K'') of a semisimple simply connected isotropic algebraic group ''G'' over a field ''K'' is trivial. The Whitehead group is the quotient of the rational points of ''G'' by the normal subgroup generated by ''K''-subgroups isomorphic to the additive group. Fields for which the Whitehead group vanishes A special case of the Kneser–Tits problem asks for which fields the Whitehead group of a semisimple almost simple simply connected isotropic algebraic group is always trivial. showed that this Whitehead group is trivial for local field In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact t ...s ''K'', and gave examples of fields for which it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ehrhart Polynomial
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane. These polynomials are named after Eugène Ehrhart who studied them in the 1960s. Definition Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in . More formally, consider a lattice \mathcal in Euclidean space \R^n and a -dimensional polytope in \R^n with the property that all vertices of the polytope are points of the lattice. (A common example is \mathcal = \Z^n and a polytope for which all vertices have integer coordinates.) For any positive integer , let be the -fold dilation of (the polytope formed by multiplying each vertex coordinate, in a basis for the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation In Algebraic Groups
In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups ''G'' over global fields ''k''. History proved strong approximation for some classical groups. Strong approximation was established in the 1960s and 1970s, for semisimple simply-connected algebraic groups over global fields. The results for number fields are due to and ; the function field case, over finite fields, is due to and . In the number field case Platonov also proved a related result over local fields called the Kneser–Tits conjecture. Formal definitions and properties Let ''G'' be a linear algebraic group over a global field ''k'', and ''A'' the adele ring of ''k''. If ''S'' is a non-empty finite set of places of ''k'', then we write ''A''''S'' for the ring of ''S''-adeles and ''A''''S'' for the product of the completions ''k''''s'', for ''s'' in the finite set ''S''. For any choice of ''S'', ''G''(''k'') embeds in ''G''(''A''''S'') and ''G''(''A'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Groups
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




International Congress Of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the Nevanlinna Prize (to be renamed as the IMU Abacus Medal), the Carl Friedrich Gauss Prize, Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest. Being List of International Congresses of Mathematicians Plenary and Invited Speakers, invited to talk at the ICM has been called "the equivalent ... of an induction to a hall of fame". History Felix Klein and Georg Cantor are credited with putting forward the idea of an international congress of mathematicians in the 1890s.A. John Coleman"Mathematics without borders": a book review ''CMS Notes'', vol 31, no. 3, April 1999 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]