EXPTIME-complete
   HOME
*





EXPTIME-complete
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds. EXPTIME can also be reformulated as the space class APSPACE, the set of all problems that can be solved by an alternating Turing machine in polynomial space. EXPTIME relates to the other basic time and space complexity classes in the following way: P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. Furthemore, by the time hierarchy theorem and the space hierarchy theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2-EXPTIME
In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(22''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. In terms of DTIME, : \mathsf = \bigcup_ \mathsf \left( 2^ \right) . We know : P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ 2-EXPTIME ⊆ ELEMENTARY. 2-EXPTIME can also be reformulated as the space class AEXPSPACE, the problems that can be solved by an alternating Turing machine in exponential space. This is one way to see that EXPSPACE ⊆ 2-EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine. 2-EXPTIME is one class in a hierarchy of complexity classes with increasingly higher time bounds. The class 3-EXPTIME is defined similarly to 2-EXPTIME but with a triply exponential time bound 2^. This can be generalized to higher and higher time bounds. Examples Exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NEXPTIME
In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2^. In terms of NTIME, :\mathsf = \bigcup_ \mathsf(2^) Alternatively, NEXPTIME can be defined using deterministic Turing machines as verifiers. A language ''L'' is in NEXPTIME if and only if there exist polynomials ''p'' and ''q'', and a deterministic Turing machine ''M'', such that * For all ''x'' and ''y'', the machine ''M'' runs in time 2^ on input * For all ''x'' in ''L'', there exists a string ''y'' of length 2^ such that * For all ''x'' not in ''L'' and all strings ''y'' of length 2^, We know : and also, by the time hierarchy theorem, that : If , then (padding argument); more precisely, if and only if there exist sparse languages in NP that are not in P. Alternative characterizations NEXPTIME often arises in the context of interactive proof systems, where there are two major ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Game
In computational complexity theory, a generalized game is a game or puzzle that has been generalized so that it can be played on a board or grid of any size. For example, generalized chess is the game of chess played on an n\times n board, with 2n pieces on each side. Generalized Sudoku includes Sudokus constructed on an n\times n grid. Complexity theory studies the asymptotic difficulty of problems, so generalizations of games are needed, as games on a fixed size of board are finite problems. For many generalized games which last for a number of moves polynomial in the size of the board, the problem of determining if there is a win for the first player in a given position is PSPACE-complete. Generalized hex and reversi are PSPACE-complete. For many generalized games which may last for a number of moves exponential in the size of the board, the problem of determining if there is a win for the first player in a given position is EXPTIME-complete. Generalized chess, go (with Japa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P Versus NP Problem
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term ''quickly'', used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time). The general class of questions for which some algorithm can provide an answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it is possible to verify the answer quickly. The class of questions for which an answer can be ''verified'' in polynomial time is NP, which stands for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P-complete
In computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: * which problems are difficult to parallelize effectively, * which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered. The specific type of reduction used varies and may affect the exact set of problems. Generically, reductions stronger than polynomial-time reductions are used, since all languages in P (except the empty language and the language of all strings) are P-complete under polynomial-time reductions. If we use NC reductions, that is, reductions which can operate in polylogarithmic time on a parallel computer with a polynomial number of processors, then all P-complete problems lie outside NC and so cannot be effecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXPSPACE
In computational complexity theory, is the set of all decision problems solvable by a deterministic Turing machine in exponential space, i.e., in O(2^) space, where p(n) is a polynomial function of n. Some authors restrict p(n) to be a linear function, but most authors instead call the resulting class . If we use a nondeterministic machine instead, we get the class , which is equal to by Savitch's theorem. A decision problem is if it is in , and every problem in has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. problems might be thought of as the hardest problems in . is a strict superset of , , and and is believed to be a strict superset of . Formal definition In terms of and , :\mathsf = \bigcup_ \mathsf\left(2^\right) = \bigcup_ \mathsf\left(2^\right) Examples of problems An example of an problem is the problem of recognizing wheth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Checkers
Checkers (American English), also known as draughts (; British English), is a group of strategy board games for two players which involve diagonal moves of uniform game pieces and mandatory captures by jumping over opponent pieces. Checkers is developed from alquerque. The term "checkers" derives from the checkered board which the game is played on, whereas "draughts" derives from the verb "to draw" or "to move". The most popular forms of checkers in Anglophone countries are American checkers (also called English draughts), which is played on an 8×8 checkerboard; Russian draughts, Turkish draughts both on an 8x8 board, and International draughts, played on a 10×10 board – the latter is widely played in many countries worldwide. There are many other variants played on 8×8 boards. Canadian checkers and Singaporean/Malaysian checkers (also locally known as ''dum'') are played on a 12×12 board. American checkers was weakly solved in 2007 by a team of Canadian computer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chess
Chess is a board game for two players, called White and Black, each controlling an army of chess pieces in their color, with the objective to checkmate the opponent's king. It is sometimes called international chess or Western chess to distinguish it from related games, such as xiangqi (Chinese chess) and shogi (Japanese chess). The recorded history of chess goes back at least to the emergence of a similar game, chaturanga, in seventh-century India. The rules of chess as we know them today emerged in Europe at the end of the 15th century, with standardization and universal acceptance by the end of the 19th century. Today, chess is one of the world's most popular games, played by millions of people worldwide. Chess is an abstract strategy game that involves no hidden information and no use of dice or cards. It is played on a chessboard with 64 squares arranged in an eight-by-eight grid. At the start, each player controls sixteen pieces: one king, one queen, two rooks, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Halting Problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program–input pairs cannot exist. For any program that might determine whether programs halt, a "pathological" program , called with some input, can pass its own source and its input to ''f'' and then specifically do the opposite of what ''f'' predicts ''g'' will do. No ''f'' can exist that handles this case. A key part of the proof is a mathematical definition of a computer and program, which is known as a Turing machine; the halting problem is '' undecidable'' over Turing machines. It is one of the first cases of decision problems proven to be unsolvable. This proof is significant to practical computing efforts, defining a class of applications which no programming inventi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




DTIME
In computational complexity theory, DTIME (or TIME) is the computational resource of computation time for a deterministic Turing machine. It represents the amount of time (or number of computation steps) that a "normal" physical computer would take to solve a certain computational problem using a certain algorithm. It is one of the most well-studied complexity resources, because it corresponds so closely to an important real-world resource (the amount of time it takes a computer to solve a problem). The resource DTIME is used to define complexity classes, sets of all of the decision problems which can be solved using a certain amount of computation time. If a problem of input size ''n'' can be solved in , we have a complexity class (or ). There is no restriction on the amount of memory space used, but there may be restrictions on some other complexity resources (like alternation). Complexity classes in DTIME Many important complexity classes are defined in terms of DTIME, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]