Exponentially Closed Field
In mathematics, an ordered exponential field is an ordered field together with a function which generalises the idea of exponential functions on the ordered field of real numbers. Definition An exponential E on an ordered field K is a strictly increasing isomorphism of the additive group of K onto the multiplicative group of positive elements of K. The ordered field K\, together with the additional function E\, is called an ordered exponential field. Examples * The canonical example for an ordered exponential field is the ordered field of real numbers R with any function of the form a^x where a is a real number greater than 1. One such function is the usual exponential function, that is . The ordered field R equipped with this function gives the ordered real exponential field, denoted by . It was proved in the 1990s that Rexp is model complete, a result known as Wilkie's theorem. This result, when combined with Khovanskiĭ's theorem on pfaffian functions, proves that Rexp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisible Group
In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an ''n''th multiple for each positive integer ''n''. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups. Definition An abelian group (G, +) is divisible if, for every positive integer n and every g \in G, there exists y \in G such that ny=g. An equivalent condition is: for any positive integer n, nG=G, since the existence of y for every n and g implies that n G\supseteq G, and the other direction n G\subseteq G is true for every group. A third equivalent condition is that an abelian group G is divisible if and only if G is an injective object in the category of abelian groups; for this reason, a divisible group is sometimes called an injective group. An abelian group is p-divisible for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other result ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases: 2011. American Mathematical Society. * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Field
In mathematics, an exponential field is a field that has an extra operation on its elements which extends the usual idea of exponentiation. Definition A field is an algebraic structure composed of a set of elements, ''F'', two binary operations, addition (+) such that ''F'' forms an abelian group with identity 0''F'' and multiplication (·), such that ''F'' excluding 0''F'' forms an abelian group under multiplication with identity 1''F'', and such that multiplication is distributive over addition, that is for any elements ''a'', ''b'', ''c'' in ''F'', one has . If there is also a function ''E'' that maps ''F'' into ''F'', and such that for every ''a'' and ''b'' in ''F'' one has :\begin&E(a+b)=E(a)\cdot E(b),\\&E(0_F)=1_F \end then ''F'' is called an exponential field, and the function ''E'' is called an exponential function on ''F''. Thus an exponential function on a field is a homomorphism between the additive group of ''F'' and its multiplicative group. Trivial exponential f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudoelementary Class
In logic, a pseudoelementary class is a class of structures derived from an elementary class (one definable in first-order logic) by omitting some of its sorts and relations. It is the mathematical logic counterpart of the notion in category theory of (the codomain of) a forgetful functor, and in physics of (hypothesized) hidden variable theories purporting to explain quantum mechanics. Elementary classes are (vacuously) pseudoelementary but the converse is not always true; nevertheless pseudoelementary classes share some of the properties of elementary classes such as being closed under ultraproducts. Definition A pseudoelementary class is a reduct of an elementary class. That is, it is obtained by omitting some of the sorts and relations of a (many-sorted) elementary class. Examples The theory with equality of sets under union and intersection, whose structures are of the form (''W'', ∪, ∩), can be understood naively as the pseudoelementary class formed from the two-so ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementarily Equivalent
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Class
In model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. Definition A class ''K'' of structures of a signature σ is called an elementary class if there is a first-order theory ''T'' of signature σ, such that ''K'' consists of all models of ''T'', i.e., of all σ-structures that satisfy ''T''. If ''T'' can be chosen as a theory consisting of a single first-order sentence, then ''K'' is called a basic elementary class. More generally, ''K'' is a pseudo-elementary class if there is a first-order theory ''T'' of a signature that extends σ, such that ''K'' consists of all σ-structures that are reducts to σ of models of ''T''. In other words, a class ''K'' of σ-structures is pseudo-elementary iff there is an elementary class ''K''' such that ''K'' consists of precisely the reducts to σ of the structures in ''K'''. For obvious reasons, elementary classes are al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gelfond–Schneider Theorem
In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers. History It was originally proved independently in 1934 by Aleksandr Gelfond and Theodor Schneider. Statement : If ''a'' and ''b'' are complex algebraic numbers with ''a'' ≠ 0, 1, and ''b'' not rational, then any value of ''ab'' is a transcendental number. Comments * The values of ''a'' and ''b'' are not restricted to real numbers; complex numbers are allowed (here complex numbers are not regarded as rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational). * In general, is multivalued, where ln stands for the natural logarithm. This accounts for the phrase "any value of" in the theorem's statement. * An equivalent formulation of the theorem is the following: if ''α'' and ''γ'' are nonzero algebraic numbers, and we take any non-zero logarithm of ''α'', then is either rational or transcendental. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real-closed Field
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definitions A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' of '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |