HOME
*



picture info

Evolutionary Map Of The Universe
Evolutionary Map of the Universe, or EMU, is a large project which will use the new ASKAP telescope to make a census of radio sources in the sky. EMU is expected to detect about 70 million radio sources. compared to the 2.5 million radio sources currently known, most of which were detected by the NRAO VLA Sky Survey. Most of these radio sources will be galaxies millions of light years away, many containing massive black holes, and some of the signals detected will have been sent less than half a billion years after the Big Bang, which created the universe 13.7 billion years ago. Unlike the NVSS, which mainly detected active galactic nuclei, the greater sensitivity of EMU means that about half the galaxies detected will be star-forming galaxies. EMU's primary science driver is to try to understand how the stars and galaxies were first formed, and how they evolved to their present state. The census of 70 million galaxies detected by EMU will represent galaxies in all their different ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CSIRO ScienceImage 2161 Close Up Of A Radio Astronomy Telescope With Several More In The Background
The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is an Australian Government agency responsible for scientific research. CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people. Federally funded scientific research began in Australia years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949, further legislated changes included renaming the organisation as CSIRO. Notable developments by CSIRO have included the invention of atomic absorption spectroscopy, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Murchison Widefield Array
The Murchison Widefield Array (MWA) is a joint project between an international consortium of organisations to construct and operate a low-frequency radio array. 'Widefield' refers to its very large field of view (on the order of 30 degrees across). Operating in the frequency range 70–300 MHz, the main scientific goals of the MWA are to detect neutral atomic Hydrogen emission from the cosmological Epoch of Reionization (EoR), to study the sun, the heliosphere, the Earth's ionosphere, and radio transient phenomena, as well as map the extragalactic radio sky. It is located at the Murchison Radio-astronomy Observatory (MRO). Along with the Australian Square Kilometre Array Pathfinder (ASKAP), also at the MRO, and two radio telescopes in South Africa, the Hydrogen Epoch of Reionization Array (HERA) and MeerKAT, the MWA is one of four precursors to the international project known as the Square Kilometre Array (SKA). Development The MWA was to be situated at Mileura Statio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Odd Radio Circle
In astronomy, an odd radio circle (ORC) is a very large (over 50 thousand times the diameter of our Milky Way ~ 3 Million Light-years) unexplained astronomical object that, at radio wavelengths, is highly circular and brighter along its edges. As of 27 April 2021, there have been five such objects (and possibly six more) observed. The observed ORCs are bright at radio wavelengths, but are not visible at visible, infrared or X-ray wavelengths. This is due to the physical process producing this radiation, which is thought to be synchrotron radiation. Three of the ORCs contain optical galaxies in their centers, suggesting that the galaxies might have formed these objects. Description The ORCs were detected in late 2019 after astronomer Anna Kapinska studied a Pilot Survey of the Evolutionary Map of the Universe (EMU), based on the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope array. All of the ORCs are about 1 arcminute in diameter, and are some dista ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Faraday Effect
The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials (including liquids) under the influence of magnetic fields. Discovered by Michael Faraday in 1845, the Faraday effect was the first experimental evidence that light and electromagnetism are related. The theoretical basis of electromagnetic radiation (which includes visible light) was completed by James Clerk Maxwell in the 1860s. Maxwell's equations were rewritten in their current form in the 1870s by Oliver Heaviside. The Faraday effect is caused by left and right circularly polarized waves pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stokes Parameters
The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation. They were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (''I''), (fractional) degree of polarization (''p''), and the shape parameters of the polarization ellipse. The effect of an optical system on the polarization of light can be determined by constructing the Stokes vector for the input light and applying Mueller calculus, to obtain the Stokes vector of the light leaving the system. The original Stokes paper was discovered independently by Francis Perrin in 1942 and by Subrahamanyan Chandrasekhar in 1947, who named it as the Stokes parameters. Definitions The relationship of the Stokes parameters ''S''0, ''S''1, ''S''2, ''S''3 to intensity and polarization ellipse parameters is shown in the equations below and the fig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Declination
In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of the celestial equator, along the hour circle passing through the point in question. The root of the word ''declination'' (Latin, ''declinatio'') means "a bending away" or "a bending down". It comes from the same root as the words ''incline'' ("bend foward") and ''recline'' ("bend backward"). In some 18th and 19th century astronomical texts, declination is given as ''North Pole Distance'' (N.P.D.), which is equivalent to 90 – (declination). For instance an object marked as declination −5 would have an N.P.D. of 95, and a declination of −90 (the south celestial pole) would have an N.P.D. of 180. Explanation Declination in astronomy is comparable to geographic latitude, projected onto the celestial sphere, and right ascension is like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ray Norris (astrophysicist)
Ray Norris is an astrophysicist and science communicator, based at the CSIRO Australia Telescope National Facility, and Western Sydney University, and conducts research in astrophysics and Aboriginal Astronomy. Early life Ray Norris was born in London and grew up in Brookmans Park, Hertfordshire, England in 1953. He attended high school at St. Albans School and then went to Cambridge University, where he received an honours degree in theoretical physics. He then went to the Jodrell Bank Observatory of the University of Manchester where he received his PhD in radio-astronomy in 1978, working on astrophysical masers. At the same time, he started to develop an interest in the archaeoastronomy of Stonehenge and other megalithic observatories, joined a group of students led by Clive Ruggles and spent several years surveying the stone circles of the British Isles. Career He moved to Australia in 1983 to work for the CSIRO Australia Telescope National Facility. He was appointed as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spektr-RG
Spektr-RG (Russian: Спектр-РГ, ''Spectrum'' + '' Röntgen'' + ''Gamma''; also called Spectrum-X-Gamma, SRG, SXG) is a Russian–German high-energy astrophysics space observatory which was launched on 13 July 2019. It follows on from the Spektr-R satellite telescope launched in 2011. Background The original idea for this X-ray observatory satellite orbiting above Earth's atmosphere, which filters X-rays, was first proposed in the 1980s by Rashid Sunyaev of the Space Research Institute of the USSR Academy of Sciences. Twenty institutions from twelve countries came together to design a large observatory with five telescopes. However, after the collapse of the Soviet Union, the mission was abandoned due to cost-cutting from the Russian space program Roscosmos. The project was resurrected in 2003 with a scaled-down design. Overview The primary instrument of the mission is eROSITA, built by the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. It is des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wide-field Infrared Survey Explorer
Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and SMEX-6) is a NASA infrared astronomy space telescope in the Explorers Program. It was launched in December 2009, and placed in hibernation mode in February 2011, before being re-activated in 2013 and renamed the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE). WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid. WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Earth orbit. After its solid hydrogen coolant depleted, a four-month mission extension called NEOWISE was conducted to search for near-Earth objects (NEO) such as comets and asteroids using its remaining capability. The WISE All-Sky (WISEA) data, including processed images, source cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SkyMapper
SkyMapper is a fully automated 1.35 m (4.4 ft) wide-angle optical telescope at Siding Spring Observatory in northern New South Wales, Australia. It is one of the telescopes of the Research School of Astronomy and Astrophysics of the Australian National University (ANU). The telescope has a compact modified Cassegrain design with a large 0.69 m secondary mirror, which gives it a very wide field of view: its single, dedicated instrument, a 268-million pixel imaging camera, can photograph 5.7 square degrees of sky. The camera has six light filters which span from ultraviolet to near infrared wavelengths. The SkyMapper telescope was built to carry out the Southern Sky Survey, which will image the entire southern sky several times over in SkyMapper's six spectral filters over the course of five years. This survey will be analogous to the Sloan Digital Sky Survey of the Northern hemisphere sky. It has several enhancements, including temporal coverage, more precise measu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Low-Frequency Array (LOFAR)
The Low-Frequency Array, or LOFAR, is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institute for Radio Astronomy, it was first opened by queen Beatrix of The Netherlands in 2010, and has since been operated on behalf of the International LOFAR Telescope (ILT) partnership by ASTRON. LOFAR consists of a vast array of omnidirectional radio antennas using a modern concept, in which the signals from the separate antennas are not connected directly electrically to act as a single large antenna, as they are in most array antennas. Instead, the LOFAR dipole antennas (of two types) are distributed in stations, within which the antenna signals can be partly combined in analogue electronics, then digitised, then combined again across the full station. This step-wise approach provides great flexibility in setting and rapidly changing the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MeerKAT
MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas in the Meerkat National Park, in the Northern Cape of South Africa. In 2003, South Africa submitted an expression of interest to host the Square Kilometre Array (SKA) Radio Telescope in Africa, and the locally designed and built MeerKAT was incorporated into the first phase of the SKA. MeerKAT was launched in 2018. Along with the Hydrogen Epoch of Reionization Array (HERA), also in South Africa, and two radio telescopes in Western Australia, the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA), the MeerKAT is one of four precursors to the final SKA. History MeerKAT is a precursor for the SKA-mid array, as are the Hydrogen Epoch of Reionization Array (HERA), the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA). Description It is located on the SKA site in the Karoo, and is a pathfinder for SKA-mid technologies and science. It was design ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]