HOME
*





Euler Summation
In the mathematics of convergent series, convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σ''a''''n'', if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be used to speed the convergence of series. Euler summation can be generalized into a family of methods denoted (E, ''q''), where ''q'' ≥ 0. The (E, 1) sum is the ordinary Euler sum. All of these methods are strictly weaker than Borel summation; for ''q'' > 0 they are incomparable with Abel summation. Definition For some value ''y'' we may define the Euler sum (if it converges for that value of ''y'') corresponding to a particular formal summation as: : _\, \sum_^\infty a_j := \sum_^\infty \frac \sum_^i \binom y^ a_j . If a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_0, a_1, a_2, \ldots) defines a series that is denoted :S=a_0 +a_1+ a_2 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = \sum_^n a_k. A series is convergent (or converges) if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers of 2 also produces a convergent series: *: -+-+-+\cdots = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Transform
In combinatorics, the binomial transform is a sequence transformation (i.e., a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function. Definition The binomial transform, ''T'', of a sequence, , is the sequence defined by :s_n = \sum_^n (-1)^k a_k. Formally, one may write :s_n = (Ta)_n = \sum_^n T_ a_k for the transformation, where ''T'' is an infinite-dimensional operator with matrix elements ''T''''nk''. The transform is an involution, that is, :TT = 1 or, using index notation, :\sum_^\infty T_T_ = \delta_ where \delta_ is the Kronecker delta. The original series can be regained by :a_n=\sum_^n (-1)^k s_k. The binomial transform of a sequence is just the ''n''th forward differences of the sequence, with odd differences carrying a negative sign, namely: :\begin s_0 &= a_0 \\ s_1 &= - (\Delta a) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler–Boole Summation
Euler–Boole summation is a method for summing alternating series based on Euler's polynomials, which are defined by : \frac=\sum_^\infty E_n(x)\frac. The concept is named after Leonhard Euler and George Boole. The periodic Euler functions are :\widetilde E_n(x+1)=-\widetilde E_n(x)\text \widetilde E_n(x)=E_n(x) \text 0 The Euler–Boole formula to sum alternating series is : \sum_^(-1)^j f(j+h) = \frac\sum_^ \frac \left((-1)^ f^(n)+(-1)^a f^(a)\right) + \frac 1 \int_a^n f^(x)\widetilde E_(h-x) \, dx, where a,m,n\in\N, a and f^ is the ''k''th derivative.


References

*Jonathan M. Borwein, Neil J. Calkin, Dante Manna: ''Euler–Boole Summation Revisited''. ''The American Mathematical Monthly'', Vol. 116, No. 5 (May, 2009), pp. 387–412
online
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Van Wijngaarden Transformation
In mathematics and numerical analysis, the van Wijngaarden transformation is a variant on the Euler transform used to accelerate the convergence of an alternating series. One algorithm to compute Euler's transform runs as follows: Compute a row of partial sums s_ = \sum_^k(-1)^n a_n and form rows of averages between neighbors s_ = \frac2 The first column s_ then contains the partial sums of the Euler transform. Adriaan van Wijngaarden's contribution was to point out that it is better not to carry this procedure through to the very end, but to stop two-thirds of the way. A. van Wijngaarden, in: Cursus: Wetenschappelijk Rekenen B, Proces Analyse, Stichting Mathematisch Centrum, (Amsterdam, 1965) pp. 51-60 If a_0,a_1,\ldots,a_ are available, then s_ is almost always a better approximation to the sum than s_. In many cases the diagonal terms do not converge in one cycle so process of averaging is to be repeated with diagonal terms by bringing them in a row. (For example, this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abel's Summation Formula
In mathematics, Abel's summation formula, introduced by Niels Henrik Abel, is intensively used in analytic number theory and the study of special functions to compute series. Formula Let (a_n)_^\infty be a sequence of real or complex numbers. Define the partial sum function A by :A(t) = \sum_ a_n for any real number t. Fix real numbers x . Then: :\sum_ a_n\phi(n) = A(y)\phi(y) - A(x)\phi(x) - \int_x^y A(u)\phi'(u)\,du. The formula is derived by applying integration by parts for a Riemann–Stieltjes integral to the functions A and \phi. Variations Taking the left endpoint to be -1 gives the formula :\sum_ a_n\phi(n) = A(x)\phi(x) - \int_0^x A(u)\phi'(u)\,du. If the sequence (a_n) is indexed starting at n = 1, then we may formally define a_0 = 0. The previous formula becomes :\sum_ a_n\phi(n) = A(x)\phi(x) - \int_1^x A(u)\phi'(u)\,du. A common way to apply Abel's summation formula is to take the limit of one of these formulas as x \to \infty. The resulting formulas are :\be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abel–Plana Formula
In mathematics, the Abel–Plana formula is a summation formula discovered independently by and . It states that :\sum_^\infty f(n)=\frac 1 2 f(0)+ \int_0^\infty f(x) \, dx+ i \int_0^\infty \frac \, dt. It holds for functions ''f'' that are holomorphic in the region Re(''z'') ≥ 0, and satisfy a suitable growth condition in this region; for example it is enough to assume that , ''f'', is bounded by ''C''/, ''z'', 1+ε in this region for some constants ''C'', ε > 0, though the formula also holds under much weaker bounds. . An example is provided by the Hurwitz zeta function, :\zeta(s,\alpha)= \sum_^\infty \frac = \frac + \frac 1 + 2\int_0^\infty\frac\frac, which holds for all s \in \mathbb, . Abel also gave the following variation for alternating sums: :\sum_^\infty (-1)^nf(n)= \frac f(0)+i \int_0^\infty \frac \, dt. Which is related to the Lindelöf summation formula \sum_^(-1)^kf(k)=(-1)^m\int_^f(m-1/2+ix)\frac Proof Let f be holomorphic on \Re(z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian And Tauberian Theorems
In mathematics, Abelian and Tauberian theorems are theorems giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/''n'')) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give similar results for more general summation methods. There is not yet a clear distinction between Abelian and Tauberian theorems, and no generally accepted definition of what these terms mean. Often, a theorem is called "Abelian" if it shows that some summation method gives the usual sum for convergent series, and is called "Tauberian" if it gives conditions for a series summable by some method that allows it to be summable in the usual sense. In the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perron's Formula
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform. Statement Let \ be an arithmetic function, and let : g(s)=\sum_^ \frac be the corresponding Dirichlet series. Presume the Dirichlet series to be uniform convergence, uniformly convergent for \Re(s)>\sigma. Then Perron's formula is : A(x) = ' a(n) =\frac\int_^ g(z)\frac \,dz. Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when ''x'' is an integer. The integral is not a convergent Lebesgue integral; it is understood as the Cauchy principal value. The formula requires that ''c'' > 0, ''c'' > σ, and ''x'' > 0. Proof An easy sketch of the proof comes from taking Abel's summation formula, Abel's sum formula : g(s)=\sum_^ \frac=s\int_^ A(x)x^ dx. This is nothing but a Laplace transform under the variable change x = e^t. Invertin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lambert Summation
In mathematical analysis, Lambert summation is a summability method for a class of divergent series. Definition A series \sum a_n is ''Lambert summable'' to ''A'', written \sum a_n = A \,(\mathrm), if :\lim_ (1-r) \sum_^\infty \frac = A . If a series is convergent to ''A'' then it is Lambert summable to ''A'' (an Abelian theorem). Examples * \sum_^\infty \frac = 0 \,(\mathrm), where μ is the Möbius function. Hence if this series converges at all, it converges to zero. See also * Lambert series * Abel–Plana formula * Abelian and tauberian theorems In mathematics, Abelian and Tauberian theorems are theorems giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that ... References * * * Mathematical series Summability methods {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cesàro Summation
In mathematical analysis, Cesàro summation (also known as the Cesàro mean ) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as ''n'' tends to infinity, of the sequence of arithmetic means of the first ''n'' partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906). The term ''summation'' can be misleading, as some statements and proofs regarding Cesàro summation can be said to implicate the Eilenberg–Mazur swindle. For example, it is commonly applied to Grandi's series with the conclusion that the ''sum'' of that series is 1/2. Definition Let (a_n)_^\infty be a sequence, and let :s_k = a_1 + \cdots + a_k= \sum_^k a_n be its th partial sum. The sequence is called Cesàro summable, with Cesàro sum , if, as tends to infinity, the arithmetic mean of its first ''n'' partial sums tends to : :\lim_ \f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed-form Expression
In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations (e.g., + − × ÷), and functions (e.g., ''n''th root, exponent, logarithm, trigonometric functions, and inverse hyperbolic functions), but usually no limit, differentiation, or integration. The set of operations and functions may vary with author and context. Example: roots of polynomials The solutions of any quadratic equation with complex coefficients can be expressed in closed form in terms of addition, subtraction, multiplication, division, and square root extraction, each of which is an elementary function. For example, the quadratic equation :ax^2+bx+c=0, is tractable since its solutions can be expressed as a closed-form expression, i.e. in terms of elementary functions: :x=\frac. Similarly, solutions of cubic and quartic (third and fourth degree) equations can be expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divergent Series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent ser ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]