HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain
constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
, variables, certain well-known
operations Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ...
(e.g., + − × ÷), and functions (e.g., ''n''th root, exponent,
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
, trigonometric functions, and inverse hyperbolic functions), but usually no
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
, differentiation, or
integration Integration may refer to: Biology * Multisensory integration * Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technolo ...
. The set of operations and functions may vary with author and context.


Example: roots of polynomials

The solutions of any quadratic equation with complex coefficients can be expressed in closed form in terms of addition,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
,
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
, division, and square root extraction, each of which is an elementary function. For example, the quadratic equation :ax^2+bx+c=0, is tractable since its solutions can be expressed as a closed-form expression, i.e. in terms of elementary functions: :x=\frac. Similarly, solutions of cubic and quartic (third and fourth degree) equations can be expressed using arithmetic, square roots, and th roots. However, there are quintic equations without such closed-form solutions, for example ; this is Abel–Ruffini theorem. The study of the existence of closed forms for polynomial roots is the initial motivation and one of the main achievements of the area of mathematics named Galois theory.


Alternative definitions

Changing the definition of "well known" to include additional functions can change the set of equations with closed-form solutions. Many
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Ev ...
s cannot be expressed in closed form, unless one considers
special functions Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined ...
such as the error function or
gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
to be well known. It is possible to solve the quintic equation if general hypergeometric functions are included, although the solution is far too complicated algebraically to be useful. For many practical computer applications, it is entirely reasonable to assume that the gamma function and other special functions are well known since numerical implementations are widely available.


Analytic expression

An analytic expression (also known as expression in analytic form or analytic formula) is a mathematical expression constructed using well-known operations that lend themselves readily to calculation. Similar to closed-form expressions, the set of well-known functions allowed can vary according to context but always includes the basic arithmetic operations (addition, subtraction, multiplication, and division), exponentiation to a real exponent (which includes extraction of the th root), logarithms, and trigonometric functions. However, the class of expressions considered to be analytic expressions tends to be wider than that for closed-form expressions. In particular,
special functions Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined ...
such as the Bessel functions and the
gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
are usually allowed, and often so are infinite series and continued fractions. On the other hand, limits in general, and
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s in particular, are typically excluded. If an analytic expression involves only the algebraic operations (addition, subtraction, multiplication, division, and exponentiation to a rational exponent) and rational constants then it is more specifically referred to as an algebraic expression.


Comparison of different classes of expressions

Closed-form expressions are an important sub-class of analytic expressions, which contain a bounded or an unbounded number of applications of well-known functions. Unlike the broader analytic expressions, the closed-form expressions do not include infinite series or continued fractions; neither includes
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s or limits. Indeed, by the
Stone–Weierstrass theorem In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the si ...
, any continuous function on the unit interval can be expressed as a limit of polynomials, so any class of functions containing the polynomials and closed under limits will necessarily include all continuous functions. Similarly, an equation or
system of equations In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single ...
is said to have a closed-form solution if, and only if, at least one solution can be expressed as a closed-form expression; and it is said to have an analytic solution if and only if at least one solution can be expressed as an analytic expression. There is a subtle distinction between a "closed-form ''function''" and a " closed-form ''number''" in the discussion of a "closed-form solution", discussed in and below. A closed-form or analytic solution is sometimes referred to as an explicit solution.


Dealing with non-closed-form expressions


Transformation into closed-form expressions

The expression: f(x) = \sum_^\infty \frac is not in closed form because the summation entails an infinite number of elementary operations. However, by summing a geometric series this expression can be expressed in the closed form: f(x) = 2x.


Differential Galois theory

The integral of a closed-form expression may or may not itself be expressible as a closed-form expression. This study is referred to as differential Galois theory, by analogy with algebraic Galois theory. The basic theorem of differential Galois theory is due to Joseph Liouville in the 1830s and 1840s and hence referred to as Liouville's theorem. A standard example of an elementary function whose antiderivative does not have a closed-form expression is: e^, whose one antiderivative is (
up to Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' wi ...
a multiplicative constant) the error function: \operatorname(x) = \frac \int_^x e^ \, dt.


Mathematical modelling and computer simulation

Equations or systems too complex for closed-form or analytic solutions can often be analysed by
mathematical model A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
ling and computer simulation.


Closed-form number

Three subfields of the complex numbers have been suggested as encoding the notion of a "closed-form number"; in increasing order of generality, these are the Liouvillian numbers (not to be confused with Liouville numbers in the sense of rational approximation), EL numbers and elementary numbers. The Liouvillian numbers, denoted , form the smallest '' algebraically closed'' subfield of closed under exponentiation and logarithm (formally, intersection of all such subfields)—that is, numbers which involve ''explicit'' exponentiation and logarithms, but allow explicit and ''implicit'' polynomials (roots of polynomials); this is defined in . was originally referred to as elementary numbers, but this term is now used more broadly to refer to numbers defined explicitly or implicitly in terms of algebraic operations, exponentials, and logarithms. A narrower definition proposed in , denoted , and referred to as EL numbers, is the smallest subfield of closed under exponentiation and logarithm—this need not be algebraically closed, and correspond to ''explicit'' algebraic, exponential, and logarithmic operations. "EL" stands both for "exponential–logarithmic" and as an abbreviation for "elementary". Whether a number is a closed-form number is related to whether a number is
transcendental Transcendence, transcendent, or transcendental may refer to: Mathematics * Transcendental number, a number that is not the root of any polynomial with rational coefficients * Algebraic element or transcendental element, an element of a field exten ...
. Formally, Liouvillian numbers and elementary numbers contain the algebraic numbers, and they include some but not all transcendental numbers. In contrast, EL numbers do not contain all algebraic numbers, but do include some transcendental numbers. Closed-form numbers can be studied via transcendental number theory, in which a major result is the Gelfond–Schneider theorem, and a major open question is Schanuel's conjecture.


Numerical computations

For purposes of numeric computations, being in closed form is not in general necessary, as many limits and integrals can be efficiently computed.


Conversion from numerical forms

There is software that attempts to find closed-form expressions for numerical values, including RIES, in Maple and SymPy, Plouffe's Inverter, and the Inverse Symbolic Calculator.


See also

* * * * * * * * * *


References


Further reading

* * *


External links

*
Closed-form continuous-time neural networks
{{DEFAULTSORT:Closed-Form Expression Algebra Special functions