HOME
*





Engel Group
In mathematics, an element ''x'' of a Lie group or a Lie algebra is called an ''n''-Engel element, named after Friedrich Engel, if it satisfies the ''n''-Engel condition that the repeated commutator ..''x'',''y''''y''">''x'',''y''.html" ;"title="..''x'',''y''">..''x'',''y''''y'' ..., ''y'']In other words, ''n'' "["s and n copies of y, for example, [x,y],y],y], x,y],y],y],y]. [x,y],y],y],y],y], and so on. with ''n'' copies of ''y'' is trivial (where [''x'', ''y''] means ''x''−1''y''−1''xy'' or the Lie bracket). It is called an Engel element if it satisfies the Engel condition that it is ''n''-Engel for some ''n''. A Lie group or Lie algebra is said to satisfy the Engel or ''n''-Engel conditions if every element does. Such groups or algebras are called Engel groups, ''n''-Engel groups, Engel algebras, and ''n''-Engel algebras. Every nilpotent group or Lie algebra is Engel. Engel's theorem In representation theory, a branch of mathematics, Engel's theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Friedrich Engel (mathematician)
Friedrich Engel (26 December 1861 – 29 September 1941) was a German mathematician. Engel was born in Lugau, Saxony, as the son of a Lutheran pastor. He attended the Universities of both Leipzig and Berlin, before receiving his doctorate from Leipzig in 1883. Engel studied under Felix Klein at Leipzig, and collaborated with Sophus Lie for much of his life. He worked at Leipzig (1885–1904), Greifswald (1904–1913), and Giessen (1913–1931). He died in Giessen. Engel was the co-author, with Sophus Lie, of the three volume work ''Theorie der Transformationsgruppen'' (publ. 1888–1893; tr., "Theory of transformation groups"). Engel was the editor of the collected works of Sophus Lie with six volumes published between 1922 and 1937; the seventh and final volume was prepared for publication but appeared almost twenty years after Engel's death. He was also the editor of the collected works of Hermann Grassmann. Engel translated the works of Nikolai Lobachevski from Russian i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]