HOME
*





Eichler Order
In mathematics, an Eichler order, named after Martin Eichler, is an order of a quaternion algebra In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a ma ... that is the intersection of two maximal orders. References * * * {{Numtheory-stub Number theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martin Eichler
Martin Maximilian Emil Eichler (29 March 1912 – 7 October 1992) was a German number theorist. Eichler received his Ph.D. from the Martin Luther University of Halle-Wittenberg in 1936. Eichler and Goro Shimura developed a method to construct elliptic curves from certain modular forms. The converse notion that every elliptic curve has a corresponding modular form would later be the key to the proof of Fermat's Last Theorem. Selected publications * ''Quadratische Formen und orthogonale Gruppen'', Springer 1952, 1974 * * ''Einführung in die Theorie der algebraischen Zahlen und Funktionen'', Birkhäuser 1963; Eng. trans. 1966''Introduction to the theory of algebraic numbers and functions'' in which a section on modular forms is added; pbk 2014 reprint of 1963 German original * ''Projective varieties and modular forms'' 1971 (Riemann–Roch theorem); * with Don Zagier: ''The Theory of Jacobi forms'', Birkhäuser 1985; ''Über die Einheiten der Divisionsalgebren'', Mathem. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (ring Theory)
In mathematics, an order in the sense of ring theory is a subring \mathcal of a ring A, such that #''A'' is a finite-dimensional algebra over the field \mathbb of rational numbers #\mathcal spans ''A'' over \mathbb, and #\mathcal is a \mathbb-lattice in ''A''. The last two conditions can be stated in less formal terms: Additively, \mathcal is a free abelian group generated by a basis for ''A'' over \mathbb. More generally for ''R'' an integral domain contained in a field ''K'', we define \mathcal to be an ''R''-order in a ''K''-algebra ''A'' if it is a subring of ''A'' which is a full ''R''-lattice. When ''A'' is not a commutative ring, the idea of order is still important, but the phenomena are different. For example, the Hurwitz quaternions form a maximal order in the quaternions with rational co-ordinates; they are not the quaternions with integer coordinates in the most obvious sense. Maximal orders exist in general, but need not be unique: there is in general no largest or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quaternion Algebra
In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a matrix algebra by '' extending scalars'' (equivalently, tensoring with a field extension), i.e. for a suitable field extension ''K'' of ''F'', A \otimes_F K is isomorphic to the 2 × 2 matrix algebra over ''K''. The notion of a quaternion algebra can be seen as a generalization of Hamilton's quaternions to an arbitrary base field. The Hamilton quaternions are a quaternion algebra (in the above sense) over F = \mathbb, and indeed the only one over \mathbb apart from the 2 × 2 real matrix algebra, up to isomorphism. When F = \mathbb, then the biquaternions form the quaternion algebra over ''F''. Structure ''Quaternion algebra'' here means something more general than the algebra of Hamilton's quaternions. When th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maximal Order
In mathematics, an order in the sense of ring theory is a subring \mathcal of a ring A, such that #''A'' is a finite-dimensional algebra over the field \mathbb of rational numbers #\mathcal spans ''A'' over \mathbb, and #\mathcal is a \mathbb-lattice in ''A''. The last two conditions can be stated in less formal terms: Additively, \mathcal is a free abelian group generated by a basis for ''A'' over \mathbb. More generally for ''R'' an integral domain contained in a field ''K'', we define \mathcal to be an ''R''-order in a ''K''-algebra ''A'' if it is a subring of ''A'' which is a full ''R''-lattice. When ''A'' is not a commutative ring, the idea of order is still important, but the phenomena are different. For example, the Hurwitz quaternions form a maximal order in the quaternions with rational co-ordinates; they are not the quaternions with integer coordinates in the most obvious sense. Maximal orders exist in general, but need not be unique: there is in general no largest or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Für Die Reine Und Angewandte Mathematik
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer (Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–1928 Kurt Hens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]