EXPSPACE
In computational complexity theory, is the set of all decision problems solvable by a deterministic Turing machine in exponential space, i.e., in O(2^) space, where p(n) is a polynomial function of n. Some authors restrict p(n) to be a linear function, but most authors instead call the resulting class . If we use a nondeterministic machine instead, we get the class , which is equal to by Savitch's theorem. A decision problem is if it is in , and every problem in has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. problems might be thought of as the hardest problems in . is a strict superset of , , and and is believed to be a strict superset of . Formal definition In terms of and , :\mathsf = \bigcup_ \mathsf\left(2^\right) = \bigcup_ \mathsf\left(2^\right) Examples of problems An example of an problem is the problem of recognizing wheth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
EXPTIME
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds. EXPTIME can also be reformulated as the space class APSPACE, the set of all problems that can be solved by an alternating Turing machine in polynomial space. EXPTIME relates to the other basic time and space complexity classes in the following way: P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. Furthemore, by the time hierarchy theorem and the space hierarchy the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PSPACE
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''t''(''n'')), the set of all problems that can be solved by Turing machines using ''O''(''t''(''n'')) space for some function ''t'' of the input size ''n'', then we can define PSPACE formally asArora & Barak (2009) p.81 :\mathsf = \bigcup_ \mathsf(n^k). PSPACE is a strict superset of the set of context-sensitive languages. It turns out that allowing the Turing machine to be nondeterministic does not add any extra power. Because of Savitch's theorem,Arora & Barak (2009) p.85 NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a non-deterministic Turing machine without needing much more space (even though it may use much more time).Arora & Barak (2009) p.86 Also, the complements of all problems in PSPACE are also in PSPACE, meaning tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NSPACE
In computational complexity theory, non-deterministic space or NSPACE is the computational resource describing the memory space for a non-deterministic Turing machine. It is the non-deterministic counterpart of DSPACE. Complexity classes The measure NSPACE is used to define the complexity class whose solutions can be determined by a non-deterministic Turing machine. The complexity class NSPACE(''f''(''n'')) is the set of decision problems that can be solved by a non-deterministic Turing machine, ''M'', using space ''O''(''f''(''n'')), where ''n'' is the length of the input. Several important complexity classes can be defined in terms of ''NSPACE''. These include: * REG = DSPACE(''O''(1)) = NSPACE(''O''(1)), where REG is the class of regular languages (nondeterminism does not add power in constant space). * NL = NSPACE(''O''(log ''n'')) * CSL = NSPACE(''O''(''n'')), where CSL is the class of context-sensitive languages. * PSPACE = NPSPACE = \bigcup_ \mathsf(n^k) * EXPSPACE ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. An equivalent definition of NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. This definition is the basis for the abbreviation NP; " nondeterministic, polynomial time". These two definitions are equivalent because the algorithm based on the Turing machine consists of two phases, the first of which consists of a guess abou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Petri Nets
A Petri net, also known as a place/transition (PT) net, is one of several mathematical modeling languages for the description of distributed systems. It is a class of discrete event dynamic system. A Petri net is a directed bipartite graph that has two types of elements, places and transitions. Place elements are depicted as white circles and transition elements are depicted as rectangles. A place can contain any number of tokens, depicted as black circles. A transition is enabled if all places connected to it as inputs contain at least one token. Some sources state that Petri nets were invented in August 1939 by Carl Adam Petri—at the age of 13—for the purpose of describing chemical processes. Like industry standards such as UML activity diagrams, Business Process Model and Notation, and event-driven process chains, Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution. Unlike these standards, Petri nets ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Temporal Logic
In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. Subsequently, LTL is sometimes called ''propositional temporal logic'', abbreviated ''PTL''. In terms of expressive power, linear temporal logic (LTL) is a fragment of first-order logic. LTL was first proposed for the formal verification of computer programs by Amir Pnueli in 1977. Syntax LTL is built up from a finite set of propositional variables ''AP'', the logical operators ¬ and ∨, and the temporal modal operators X (some literature uses O or N) and U. Formally, the set of LTL formulas over ''AP'' is inductively defined as follows: * if p ∈ ''AP'' then p is an LTL formula; * if Ï ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplication
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a ''product''. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: :3 \times 4 = 4 + 4 + 4 = 12 Here, 3 (the ''multiplier'') and 4 (the ''multiplicand'') are the ''factors'', and 12 is the ''product''. One of the main properties of multiplication is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total amount or ''summation, sum'' of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the Expression (mathematics), mathematical expression (that is, "3 ''plus'' 2 is Equality (mathematics), equal to 5"). Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concatenation
In formal language, formal language theory and computer programming, string concatenation is the operation of joining character string (computer science), character strings wikt:end-to-end, end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalisations of concatenation theory, also called string theory, string concatenation is a primitive notion. Syntax In many programming languages, string concatenation is a binary operation, binary infix operator. The + (plus) operator is often operator overloading, overloaded to denote concatenation for string arguments: "Hello, " + "World" has the value "Hello, World". In other languages there is a separate operator, particularly to specify implicit type conversion to string, as opposed to more complicated behavior for generic plus. Examples include . in Edinburgh IMP, Perl, and PHP, .. in Lua (programming language), Lua, and & in Ada, AppleScript, and Visual Basic. Other syntax exists, like ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-deterministic Turing Machine
In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is ''not'' completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine. NTMs are sometimes used in thought experiments to examine the abilities and limits of computers. One of the most important open problems in theoretical computer science is the P versus NP problem, which (among other equivalent formulations) concerns the question of how difficult it is to simulate nondeterministic computation with a deterministic computer. Background In essence, a Turing machine is imagined to be a simple computer that reads and writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal ''state'' and ''what symbol it cur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |