EXE4
   HOME
*





EXE4
Eoxin E4, also known as 14,15-leukotriene E4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXE4
Eoxin E4, also known as 14,15-leukotriene E4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXD4
Eoxin D4, also known as 14,15-leukotriene D4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXA4
Eoxin A4, also known as 14,15-leukotriene A4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eicosanoids
Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eoxins
Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds that regulate inflammatory and immune responses). They are produced by human eosinophils (a class of white blood cells), mast cells, the L1236 Reed–Sternberg cell line derived from Hodgkin's lymphoma, and certain other tissues. These cells produce the eoxins by initially metabolizing arachidonic acid, an omega-6 (ω-6) fatty acid, via any enzyme possessing 15-lipoxygenase activity. The product of this initial metabolic step, 15(S)-hydroperoxyeicosatetraenoic acid, is then converted to a series of eoxins by the same enzymes that metabolize the 5-lipoxygenase product of arachidonic acid metabolism, i.e. 5-Hydroperoxy-eicosatetraenoic acid to a series of leukotrienes. That is, the eoxins are 14,15-disubstituted analogs of the 5,6-disubstituted leukotrienes. A closely related set of 15-lipoxygenase metabolites are derived from anandamide (i.e. arachidonic acid containing ethanolamine esterified ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eoxin
Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds that regulate inflammatory and immune responses). They are produced by human eosinophils (a class of white blood cells), mast cells, the L1236 Reed–Sternberg cell line derived from Hodgkin's lymphoma, and certain other tissues. These cells produce the eoxins by initially metabolizing arachidonic acid, an omega-6 (ω-6) fatty acid, via any enzyme possessing 15-lipoxygenase activity. The product of this initial metabolic step, 15(S)-hydroperoxyeicosatetraenoic acid, is then converted to a series of eoxins by the same enzymes that metabolize the 5-lipoxygenase product of arachidonic acid metabolism, i.e. 5-Hydroperoxy-eicosatetraenoic acid to a series of leukotrienes. That is, the eoxins are 14,15-disubstituted analogs of the 5,6-disubstituted leukotrienes. A closely related set of 15-lipoxygenase metabolites are derived from anandamide (i.e. arachidonic acid containing ethanolamine esterified ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leukotriene E4
Leukotriene E4 (LTE4) is a cysteinyl leukotriene involved in inflammation. It is known to be produced by several types of white blood cells, including eosinophils, mast cells, tissue macrophages, and basophils, and recently was also found to be produced by platelets adhering to neutrophils. It is formed from the sequential conversion of LTC4 to LTD4 and then to LTE4, which is the final and most stable cysteinyl leukotriene. Compared to the short half lives of LTC4 and LTD4, LTE4 is relatively stable and accumulates in breath condensation, in plasma, and in urine, making it the dominant cysteinyl leukotriene detected in biologic fluids. Therefore, measurements of LTE4, especially in the urine, are commonly monitored in clinical research studies. Increased production and excretion of LTE4 has been linked to several respiratory diseases, and urinary LTE4 levels are increased during severe asthma attacks and are especially high in people with aspirin-induced asthma Aspirin exacerba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LTC4
Leukotriene C4 (LTC4) is a leukotriene. LTC4 has been extensively studied in the context of allergy and asthma. In cells of myeloid origin such as mast cells, its biosynthesis is orchestrated by translocation to the nuclear envelope along with co-localization of cytosolic phospholipase A2 (cPLA2), Arachidonate 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTC4 synthase (LTC4S), which couples glutathione to an LTA4 intermediate. The MRP1 transporter then secretes cytosolic LTC4 and cell surface proteases further metabolize it by sequential cleavage of the γ-glutamyl and glycine residues off its glutathione segment, generating the more stable products LTD4 and LTE4. All three leukotrienes then bind at different affinities to two G-protein coupled receptors: CYSLTR1 and CYSLTR2, triggering pulmonary vasoconstriction and bronchoconstriction. In cells of non-haematopoietic lineage, endoplasmic reticulum (ER) stress and chemotherapy induce LTC4 biosynthesi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LTE4
Leukotriene E4 (LTE4) is a cysteinyl leukotriene involved in inflammation. It is known to be produced by several types of white blood cells, including eosinophils, mast cells, tissue macrophages, and basophils, and recently was also found to be produced by platelets adhering to neutrophils. It is formed from the sequential conversion of LTC4 to LTD4 and then to LTE4, which is the final and most stable cysteinyl leukotriene. Compared to the short half lives of LTC4 and LTD4, LTE4 is relatively stable and accumulates in breath condensation, in plasma, and in urine, making it the dominant cysteinyl leukotriene detected in biologic fluids. Therefore, measurements of LTE4, especially in the urine, are commonly monitored in clinical research studies. Increased production and excretion of LTE4 has been linked to several respiratory diseases, and urinary LTE4 levels are increased during severe asthma attacks and are especially high in people with aspirin-induced asthma Aspirin exacerba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LTD4
Leukotriene D4 (LTD4) is one of the leukotrienes. Its main function in the body is to induce the contraction of smooth muscle, resulting in bronchoconstriction and vasoconstriction. It also increases vascular permeability. LTD4 is released by basophils. Other leukotrienes that function in a similar manner are leukotrienes C4 and E4. Pharmacological agents that inhibit the function of these leukotrienes are leukotriene receptor antagonists (e.g., zafirlukast, montelukast Montelukast, sold under the brand name Singulair among others, is a medication used in the maintenance treatment of asthma. It is generally less preferred for this use than inhaled corticosteroids. It is not useful for acute asthma attacks. Ot ...) and are useful for asthmatic individuals. References Eicosanoids {{biochemistry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gamma-glutamyltransferase
Gamma-glutamyltransferase (also γ-glutamyltransferase, GGT, gamma-GT, gamma-glutamyl transpeptidase; ) is a transferase (a type of enzyme) that catalyzes the transfer of gamma-glutamyl functional groups from molecules such as glutathione to an acceptor that may be an amino acid, a peptide or water (forming glutamate). GGT plays a key role in the gamma-glutamyl cycle, a pathway for the synthesis and degradation of glutathione as well as drug and xenobiotic detoxification. Other lines of evidence indicate that GGT can also exert a pro-oxidant role, with regulatory effects at various levels in cellular signal transduction and cellular pathophysiology. This transferase is found in many tissues, the most notable one being the liver, and has significance in medicine as a diagnostic marker. Nomenclature The name γ-glutamyltransferase is preferred by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. The Expert Panel on Enzymes of the In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LTA4
Leukotriene A4 (LTA4) is a leukotriene, and is the precursor for the productions of LTB4 (leukotriene B)) and LTC4 (leukotriene C4). Biosynthesis of Leukotriene A4 Following the biosynthesis of eicosanoid, triggered as a result of infection or inflammation, the resulting arachidonic acid substrate is released from the cell membrane phospholipid will enter the lipooxygenase pathway to produce Leukotriene A4. In this pathway, arachidonic acid is converted into 5-hydroperoxyeicosatetraenoic acid (5-HPETE) as a result of a catalytic complex consisting of the enzyme 5-lipoxygenase (5-LO) and FLAP (5-Lipoxygenase-activating protein) in the presence of ATP and Calcium ions. The resulting 5-HPETE yields the unstable allylic epoxide substrate LTA4 which is quickly hydrolyzed by the LTA4H (Leukotriene A4 hydrolase) enzyme to produce LTB4, or synthesized by LTC4S (Leukotriene C4 synthase) with the addition of glutathione to produce LTC4 which can be further metabolized to produce LTD4 (Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]