Distributivity (order Theory)
   HOME
*



picture info

Distributivity (order Theory)
In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well. Distributive lattices Probably the most common type of distributivity is the one defined for lattices, where the formation of binary suprema and infima provide the total operations of join (\vee) and meet (\wedge). Distributivity of these two operations is then expressed by requiring that the identity : x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) hold for all elements ''x'', ''y'', and ''z''. This distributivity law defines the class of distributive lattices. Note that this requirement can be rephrased by saying that binary meets preserve binary joins. The above statement is known to be equivalent to its order dual : x \vee (y \wedge z) = (x \vee y) \wedge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic. As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be the supremum of the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Theory
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Completely Distributive Lattice
In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice ''L'' is said to be completely distributive if, for any doubly indexed family of ''L'', we have : \bigwedge_\bigvee_ x_ = \bigvee_\bigwedge_ x_ where ''F'' is the set of choice functions ''f'' choosing for each index ''j'' of ''J'' some index ''f''(''j'') in ''K''''j''.B. A. Davey and H. A. Priestley, ''Introduction to Lattices and Order'' 2nd Edition, Cambridge University Press, 2002, , 10.23 Infinite distributive laws, pp. 239–240 Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices. Without the axiom of choice, no complete lattice with more than one element can ever satisfy the above property, as one can just let ''x''''j'',''k'' equal the top element of ''L'' for all indices ''j'' and ''k'' with all of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone Duality
In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics. This article gives pointers to special cases of Stone duality and explains a very general instance thereof in detail. Overview of Stone-type dualities Probably the most general duality that is classically referred to as "Stone duality" is the duality between the category Sob of sober spaces with continuous functions and the category SFrm of spatial frames with appropriate frame homomorphisms. The dual category of SFrm is the category of spatial lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointless Topology
In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct ''topologically interesting'' spaces from purely algebraic data. History The first approaches to topology were geometrical, where one started from Euclidean space and patched things together. But Marshall Stone's work on Stone duality in the 1930s showed that topology can be viewed from an algebraic point of view (lattice-theoretic). Apart from Stone, Henry Wallman was the first person to exploit this idea. Others continued this path till Charles Ehresmann and his student Jean Bénabou (and simultaneously others), made the next fundamental step in the late fifties. Their insights arose from the study of "topological" and "differentiable" categories. Ehresmann's approach involved using a category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Heyting Algebra
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras. Locales and frames form the foundation of pointless topology, which, instead of building on point-set topology, recasts the ideas of general topology in categorical terms, as statements on frames and locales. Definition Consider a partially ordered set (''P'', ≤) that is a complete lattice. Then ''P'' is a complete Heyting algebra or frame if any of the following equivalent conditions hold: * ''P'' is a Heyting algebra, i.e. the operation (x\land\cdot) has a right adjoint (also called the lower adjo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Completeness (order Theory)
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "\vee") and infima (greatest lower bounds, meets, "\wedge") to the theory of partial orders. Finding a supremum means to single out one distinguished least element from the set of upper bounds. On the one hand, these special elements often embody certain concrete properties that are interesting for the given application (such as being the least common multiple of a set of numbers or the union of a collection of sets). On the other hand, the knowledge that certain types of subsets are guaran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (order Theory)
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory. Basic definitions A subset of a partially ordered set (P, \leq) is an ideal, if the following conditions hold: # is non-empty, # for every ''x'' in and ''y'' in ''P'', implies that ''y'' is in  ( is a lower set), # for every ''x'', ''y'' in , there is some element ''z'' in , such that and  ( is a directed set). While this is the most general way to define an ideal for arbitrary posets, it was originally defined for lattices only. In this case, the following equivalent definition can be given: a subset of a lattice (P, \leq) is an ideal if and only if it is a lower set that is closed under finite joins ( suprema); that is, it is none ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birkhoff's Representation Theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The name “Birkhoff's representation theorem” has also been applied to two other results of Birkhoff, one from 1935 on the representation of Boolean algebras as families of sets closed under union, intersection, and complement (so-called ''fields of sets'', closely related to the ''rings of sets'' used by Bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Isomorphism
In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections. Definition Formally, given two posets (S,\le_S) and (T,\le_T), an order isomorphism from (S,\le_S) to (T,\le_T) is a bijective function f from S to T with the property that, for every x and y in S, x \le_S y if and only if f(x)\le_T f(y). That is, it is a bijective order-embedding. It is also possible to define an order isomorphism to be a surjective order-embedding. The two assumptions that f cover all the elements of T and that it preserve orderings, are enough to ensure that f is also one-to-one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]