Disjunction Introduction
   HOME
*





Disjunction Introduction
Disjunction introduction or addition (also called or introduction) is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if ''P'' is true, then ''P or Q'' must be true. An example in English: :Socrates is a man. :Therefore, Socrates is a man or pigs are flying in formation over the English Channel. The rule can be expressed as: :\frac where the rule is that whenever instances of "P" appear on lines of a proof, "P \lor Q" can be placed on a subsequent line. More generally it's also a simple valid argument form, this means that if the premise is true, then the conclusion is also true as any rule of inference should be, and an immediate inference, as it has a single proposition in its premises. Disjunction introduction is not a rule in some paraconsistent logics because in combination with other rules of logic, it leads to explosion (i.e. everyth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rule Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paraconsistent Logic
A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion. Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term ''paraconsistent'' ("beside the consistent") was first coined in 1976, by the Peruvian philosopher Francisco Miró Quesada Cantuarias. The study of paraconsistent logic has been dubbed paraconsistency, which encompasses the school of dialetheism. Definition In classical logic (as well as intuitionistic logic and most other logics), contradictions entail everything. This feature, known as the principle of explosion or ''ex contradictione sequitur quodlibet'' (Latin, "from a contradiction, anything follows") can be expressed formal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rules Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tautology (logic)
In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. It cannot be untrue. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be Contingency (philosophy), logically contingent. Such a formula can be made either true or false based on the values assigned to its propositi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal System
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined abstraction, system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Background Each formal system is described by primitive Symbol (formal), symbols (which collectively form an Alphabet (computer science), alphabet) to finitely construct a formal language from a set of axioms through inferential rules of formation. The system thus consists of valid formulas built up through finite combinations of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metalogic
Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, 2001, p. 336. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic', University of California Press, 1973 The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or "consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ''A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principle Of Explosion
In classical logic, intuitionistic logic and similar logical systems, the principle of explosion (, 'from falsehood, anything ollows; or ), or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition (including their negations) can be inferred from it; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Priest, Graham. 2011. "What's so bad about contradictions?" In ''The Law of Non-Contradicton'', edited by Priest, Beal, and Armour-Garb. Oxford: Clarendon Press. p. 25. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's parado ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Immediate Inference
An immediate inference is an inference which can be made from only one statement or proposition. For instance, from the statement "All toads are green", the immediate inference can be made that "no toads are not green" or "no toads are non-green" (Obverse). There are a number of ''immediate inferences'' which can validly be made using logical operations, the result of which is a logically equivalent statement form to the given statement. There are also invalid immediate inferences which are syllogistic fallacies. Valid immediate inferences Converse *Given a type E statement, "No ''S'' are ''P''.", one can make the ''immediate inference'' that "No ''P'' are ''S''" which is the converse of the given statement. *Given a type I statement, "Some ''S'' are ''P''.", one can make the ''immediate inference'' that "Some ''P'' are ''S''" which is the converse of the given statement. Obverse *Given a type A statement, "All ''S'' are ''P''.", one can make the ''immediate inference'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propositional Calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" (logical conjunction, conjunction), "or" (lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]