Discontinuous Linear Map
   HOME
*





Discontinuous Linear Map
In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions (see linear approximation). If the spaces involved are also topological spaces (that is, topological vector spaces), then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces (e.g., infinite-dimensional normed spaces), the answer is generally no: there exist discontinuous linear maps. If the domain of definition is complete, it is trickier; such maps can be proven to exist, but the proof relies on the axiom of choice and does not provide an explicit example. A linear map from a finite-dimensional space is always continuous Let ''X'' and ''Y'' be two normed spaces and f : X \to Y a linear map from ''X'' to ''Y''. If ''X'' is finite-dimensional, choose a basis \left(e_1, e_2, \ldots, e_n\right) in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Function
In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all Order of derivation, orders in its Domain of a function, domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or C^ function). Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an open set U on the real line and a function f defined on U with real values. Let ''k'' be a non-negative integer. The function f is said to be of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vitali Set
In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. There are uncountably many Vitali sets, and their existence depends on the axiom of choice. In 1970, Robert Solovay constructed a model of Zermelo–Fraenkel set theory without the axiom of choice where all sets of real numbers are Lebesgue measurable, assuming the existence of an inaccessible cardinal (see Solovay model). Measurable sets Certain sets have a definite 'length' or 'mass'. For instance, the interval , 1is deemed to have length 1; more generally, an interval 'a'', ''b'' ''a'' ≤ ''b'', is deemed to have length ''b'' − ''a''. If we think of such intervals as metal rods with uniform density, they likewise have well-defined masses. The set , 1∪ , 3is composed of two intervals of length one, so we take its total length to be 2. In terms of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Map
In algebra, an additive map, Z-linear map or additive function is a function f that preserves the addition operation: f(x + y) = f(x) + f(y) for every pair of elements x and y in the domain of f. For example, any linear map is additive. When the domain is the real numbers, this is Cauchy's functional equation. For a specific case of this definition, see additive polynomial. More formally, an additive map is a \Z-module homomorphism. Since an abelian group is a \Z-module, it may be defined as a group homomorphism between abelian groups. A map V \times W \to X that is additive in each of two arguments separately is called a bi-additive map or a \Z-bilinear map. Examples Typical examples include maps between rings, vector spaces, or modules that preserve the additive group. An additive map does not necessarily preserve any other structure of the object; for example, the product operation of a ring. If f and g are additive maps, then the map f + g (defined pointwise) is additiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Function
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algebra gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commensurability (mathematics)
In mathematics, two non-zero real numbers ''a'' and ''b'' are said to be ''commensurable'' if their ratio ' is a rational number; otherwise ''a'' and ''b'' are called ''incommensurable''. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory. For example, the numbers 3 and 2 are commensurable because their ratio, , is a rational number. The numbers \sqrt and 2\sqrt are also commensurable because their ratio, \frac=\frac, is a rational number. However, the numbers \sqrt and 2 are incommensurable because their ratio, \frac, is an irrational number. More generally, it is immediate from the definition that if ''a'' and ''b'' are any two non-zero rational numbers, then ''a'' and ''b'' are commensurable; it is also immediate that if ''a'' is any irrational number and ''b'' is any non-zero rational number, then ''a'' and ''b'' are incommensurable. On the other hand, if both ''a'' and ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamel Basis
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rationals
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closed Operator
In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases. The term "unbounded operator" can be misleading, since * "unbounded" should sometimes be understood as "not necessarily bounded"; * "operator" should be understood as "linear operator" (as in the case of "bounded operator"); * the domain of the operator is a linear subspace, not necessarily the whole space; * this linear subspace is not necessarily closed; often (but not always) it is assumed to be dense; * in the special case of a bounded operator, still, the domain is usually assumed to be the whole space. In contrast to bounded operators, unbounded operators on a given space do not form an algebra, nor even a linear space, because each one is defined on its own domain. The term "operator" often means "bounded linear operator", but in the con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]