Dynamical Pictures
   HOME
*





Dynamical Pictures
In quantum mechanics, dynamical pictures (or ''representations'') are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system. The two most important ones are the Heisenberg picture and the Schrödinger picture. These differ only by a basis change with respect to time-dependency, analogous to the Lagrangian and Eulerian specification of the flow field: in short, time dependence is attached to quantum states in the Schrödinger picture and to operators in the Heisenberg picture. There is also an intermediate formulation known as the interaction picture (or Dirac picture) which is useful for doing computations when a complicated Hamiltonian has a natural decomposition into a simple "free" Hamiltonian and a perturbation. Equations that apply in one picture do not necessarily hold in the others, because time-dependent unitary transformations relate operators in one picture to the analogous operators in the others. Not all textbooks and articles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Pictures
{{Citation style, date=October 2019 Dynamic Pictures Inc. was a San Jose-based company which produced the Oxygen line of high-end 3D graphics cards. In 1997, they produced three PCI-based models: the Oxygen 102, Oxygen 202, and Oxygen 402. The Oxygen 202 and 402 featured an SLI-like design in providing two and four identical graphics processing units A graphics processing unit (GPU) is a specialized electronic circuit designed to manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded systems, mobil ... to achieve higher performance. The graphics processing unit was designed by 3D Labs. The four processor Oxygen 402 received a Viewperf CDRS-03 score of 42. In comparison, a much more recent GeForce FX GL (using a Geforce 5800-class GPU) achieves a 1803 on the same test. The list price for the Oxygen 102 was $1495 1996, later reduced to $399. References *"Dynamic Pictures", Computerw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "\,\leq\," in the homogeneity axiom. It can also re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theory Of Relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy. The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old Classical mechanics, theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time in physics, time, relativity of simultaneity, kinematics, kinematic and gravity, gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone–von Neumann Theorem
In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann. Representation issues of the commutation relations In quantum mechanics, physical observables are represented mathematically by linear operators on Hilbert spaces. For a single particle moving on the real line \mathbb, there are two important observables: position and momentum. In the Schrödinger representation quantum description of such a particle, the position operator and momentum operator p are respectively given by \begin[] [x \psi](x_0) &= x_0 \psi(x_0) \\[] [p \psi](x_0) &= - i \hbar \frac(x_0) \end on the domain V of infinitely differentiable functions of compact support on \mathbb. Assume \hbar to be a fixed ''non-zero'' real number—in quantum theory \hbar is the reduced Planck' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correspondence Principle
In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says that for large orbits and for large energies, quantum calculations must agree with classical calculations. The principle was formulated by Niels Bohr in 1920, though he had previously made use of it as early as 1913 in developing his model of the atom. The term codifies the idea that a new theory should reproduce under some conditions the results of older well-established theories in those domains where the old theories work. This concept is somewhat different from the requirement of a formal limit under which the new theory reduces to the older, thanks to the existence of a deformation parameter. Classical quantities appear in quantum mechanics in the form of expected values of observables, and as such the Ehrenfest theorem (which pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ehrenfest Theorem
The Ehrenfest theorem, named after Paul Ehrenfest, an Austrian theoretical physicist at Leiden University, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of the force F=-V'(x) on a massive particle moving in a scalar potential V(x), The Ehrenfest theorem is a special case of a more general relation between the expectation of any quantum mechanical operator and the expectation of the commutator of that operator with the Hamiltonian of the system where is some quantum mechanical operator and is its expectation value. It is most apparent in the Heisenberg picture of quantum mechanics, where it amounts to just the expectation value of the Heisenberg equation of motion. It provides mathematical support to the correspondence principle. The reason is that Ehrenfest's theorem is closely related to Liouville's theorem of Hamiltonian mechanics, which involves the Poisson bracket instead of a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Observables
In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question. Quantum mechanics In quantum physics, observables manifest as linear operators on a Hilbert space representing the state space of quantum states. The e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heligoland
Heligoland (; german: Helgoland, ; Heligolandic Frisian: , , Mooring Frisian: , da, Helgoland) is a small archipelago in the North Sea. A part of the German state of Schleswig-Holstein since 1890, the islands were historically possessions of Denmark, then became the possessions of the United Kingdom from 1807 to 1890, and briefly managed as a war prize from 1945 to 1952. The islands are located in the Heligoland Bight (part of the German Bight) in the southeastern corner of the North Sea and had a population of 1,127 at the end of 2016. They are the only German islands not in the vicinity of the mainland. They lie approximately by sea from Cuxhaven at the mouth of the River Elbe. During a visit to the islands, August Heinrich Hoffmann von Fallersleben wrote the lyrics to "", which became the national anthem of Germany. In addition to German, the local population, who are ethnic Frisians, speak the Heligolandic dialect of the North Frisian language called . Name Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Werner Heisenberg
Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He was a principal scientist in the German nuclear weapons program during World War II. He was also instrumental in planning the first West German nuclear reactor at Karlsruhe, together with a research reactor in Munich, in 1957. Following World War II, he was appointed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time-ordering
In theoretical physics, path-ordering is the procedure (or a meta-operator \mathcal P) that orders a product of operators according to the value of a chosen parameter: :\mathcal P \left\ \equiv O_(\sigma_) O_(\sigma_) \cdots O_(\sigma_). Here ''p'' is a permutation that orders the parameters by value: :p : \ \to \ :\sigma_ \leq \sigma_ \leq \cdots \leq \sigma_. For example: :\mathcal P \left\ = O_4(1) O_2(2) O_3(3) O_1(4) . Examples If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection. The parameter ''σ'' that determines the ordering is a parameter describing the contour, and because the contour is closed, the Wilson loop must be defined as a trace in order to be gauge-invariant. Time ordering In quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenstate
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen ato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]