HOME
*





Dynamic Perfect Hashing
In computer science, dynamic perfect hashing is a programming technique for resolving collisions in a hash table data structure.Fredman, M. L., Komlós, J., and Szemerédi, E. 1984. Storing a Sparse Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (Jun. 1984), 538-544 http://portal.acm.org/citation.cfm?id=1884#Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., and Tarjan, R. E. 1994"Dynamic Perfect Hashing: Upper and Lower Bounds". SIAM J. Comput. 23, 4 (Aug. 1994), 738-761. http://portal.acm.org/citation.cfm?id=182370 While more memory-intensive than its hash table counterparts, this technique is useful for situations where fast queries, insertions, and deletions must be made on a large set of elements. Details Static case FKS Scheme The problem of optimal static hashing was first solved in general by Fredman, Komlós and Szemerédi. In their 1984 paper, they detail a two-tiered hash table scheme in which each bucket of the (first-level) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Distribution (discrete)
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein a finite number of values are equally likely to be observed; every one of ''n'' values has equal probability 1/''n''. Another way of saying "discrete uniform distribution" would be "a known, finite number of outcomes equally likely to happen". A simple example of the discrete uniform distribution is throwing a fair dice. The possible values are 1, 2, 3, 4, 5, 6, and each time the die is thrown the probability of a given score is 1/6. If two dice are thrown and their values added, the resulting distribution is no longer uniform because not all sums have equal probability. Although it is convenient to describe discrete uniform distributions over integers, such as this, one can also consider discrete uniform distributions over any finite set. For instance, a random permutation is a permutation generated uniformly from the permutations of a given length, and a unif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Hashing
In computer science, a perfect hash function for a set is a hash function that maps distinct elements in to a set of integers, with no collisions. In mathematical terms, it is an injective function. Perfect hash functions may be used to implement a lookup table with constant worst-case access time. A perfect hash function can, as any hash function, be used to implement hash tables, with the advantage that no collision resolution has to be implemented. In addition, if the keys are not the data and if it is known that queried keys will be valid, then the keys do not need to be stored in the lookup table, saving space. Disadvantages of perfect hash functions are that needs to be known for the construction of the perfect hash function. Non-dynamic perfect hash functions need to be re-constructed if changes. For frequently changing dynamic perfect hash functions may be used at the cost of additional space. The space requirement to store the perfect hash function is in . T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lazy Deletion
In computer science, lazy deletion refers to a method of deleting elements from a hash table that uses open addressing Open addressing, or closed hashing, is a method of collision resolution in hash tables. With this method a hash collision is resolved by probing, or searching through alternative locations in the array (the ''probe sequence'') until either the t .... In this method, deletions are done by marking an element as deleted, rather than erasing it entirely. Deleted locations are treated as empty when inserting and as occupied during a search. The problem with this scheme is that as the number of delete/insert operations increases, the cost of a successful search increases. To improve this, when an element is searched and found in the table, the element is relocated to the first location marked for deletion that was probed during the search. Instead of finding an element to relocate when the deletion occurs, the relocation occurs lazily during the next search. Reference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amortized Analysis
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Load Factor (hash Table)
Load factor may refer to: * Load factor (aeronautics), the ratio of the lift of an aircraft to its weight * Load factor (computer science), the ratio of the number of records to the number of addresses within a data structure * Load factor (electrical), the average power divided by the peak power over a period of time *Capacity factor, the ratio of actual energy output to the theoretical maximum possible in a power station * Passenger load factor, the ratio of revenue passenger miles to available seat miles of a particular transportation operation (e.g. a flight) *Factor loadings in statistics, the exposure to specific factors or components in Factor Analysis or Principal Component Analysis See also * Add-on factor In architecture, construction, and real estate, floor area, floor space, or floorspace is the area (measured as square feet or square metres) taken up by a building or part of it. The ways of defining "floor area" depend on what factors of the buil ...
- sometim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Amortized Constant Time
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Hashing
In mathematics and computing, universal hashing (in a randomized algorithm or data structure) refers to selecting a hash function at random from a family of hash functions with a certain mathematical property (see definition below). This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known (for hashing integers, vectors, strings), and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography. Introduction Assume we want to map keys from some universe U into m bins (labelled = \). The algorithm will have to handle some data set S \subseteq U of , S, =n keys, which is not known in advance. Usually, the goal of hashing is to obtain a low number of collisions (keys from S that land in the same bin). A deterministic hash function cannot offer any guarantee in an adversarial sett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Hash Function
In computer science, a perfect hash function for a set is a hash function that maps distinct elements in to a set of integers, with no collisions. In mathematical terms, it is an injective function. Perfect hash functions may be used to implement a lookup table with constant worst-case access time. A perfect hash function can, as any hash function, be used to implement hash tables, with the advantage that no collision resolution has to be implemented. In addition, if the keys are not the data and if it is known that queried keys will be valid, then the keys do not need to be stored in the lookup table, saving space. Disadvantages of perfect hash functions are that needs to be known for the construction of the perfect hash function. Non-dynamic perfect hash functions need to be re-constructed if changes. For frequently changing dynamic perfect hash functions may be used at the cost of additional space. The space requirement to store the perfect hash function is in . The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Collision
In computer science, a hash collision or hash clash is when two pieces of data in a hash table share the same hash value. The hash value in this case is derived from a hash function which takes a data input and returns a fixed length of bits. Although hash algorithms have been created with the intent of being collision resistant, they can still sometimes map different data to the same hash (by virtue of the pigeonhole principle). Malicious users can take advantage of this to mimic, access, or alter data. Due to the possible negative applications of hash collisions in data management and computer security (in particular, cryptographic hash functions), collision avoidance has become an important topic in computer security. Background Hash collisions can be unavoidable depending on the number of objects in a set and whether or not the bit string they are mapped to is long enough in length. When there is a set of ''n'' objects, if ''n'' is greater than , ''R'', , which in this ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Hash Function
In mathematics and computing, universal hashing (in a randomized algorithm or data structure) refers to selecting a hash function at random from a family of hash functions with a certain mathematical property (see definition below). This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known (for hashing integers, vectors, strings), and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography. Introduction Assume we want to map keys from some universe U into m bins (labelled = \). The algorithm will have to handle some data set S \subseteq U of , S, =n keys, which is not known in advance. Usually, the goal of hashing is to obtain a low number of collisions (keys from S that land in the same bin). A deterministic hash function cannot offer any guarantee in an adversarial sett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]