Dyadic Space
   HOME
*





Dyadic Space
In mathematics, a dyadic compactum is a Hausdorff topological space that is the continuous image of a product of discrete two-point spaces, and a dyadic space is a topological space with a compactification which is a dyadic compactum. However, many authors use the term ''dyadic space'' with the same meaning as ''dyadic compactum'' above. T. C. Przymusinski, Products of normal spaces, Ch. XVIII In K. Kunen and J.E. Vaughan (eds) ''Handbook of Set-Theoretic Topology. North-Holland, Amsterdam, 1984, p. 794. Dyadic compacta and spaces satisfy the Suslin condition, and were introduced by Russian mathematician Pavel Alexandrov Pavel Sergeyevich Alexandrov (russian: Па́вел Серге́евич Алекса́ндров), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote about three hundred papers, ma .... Polyadic spaces are generalisation of dyadic spaces. References Properties of topological spaces {{ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function (topology)
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Two-point Space
In topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ..., a branch of mathematics, a discrete two-point space is the simplest example of a totally disconnected discrete space. The points can be denoted by the symbols 0 and 1. Properties Any disconnected space has a continuous function (topology), continuous mapping which is not constant onto the discrete two-point space. Conversely if a nonconstant continuous mapping to the discrete two-point space exists from a topological space, the space is disconnected. See also * List of topologies References

{{Reflist Topological spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactification (mathematics)
In mathematics, in general topology, compactification is the process or result of making a topological space into a compact space. A compact space is a space in which every open cover of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape". An example Consider the real line with its ordinary topology. This space is not compact; in a sense, points can go off to infinity to the left or to the right. It is possible to turn the real line into a compact space by adding a single "point at infinity" which we will denote by ∞. The resulting compactification can be thought of as a circle (which is compact as a closed and bounded subset of the Euclidean plane). Every sequence that ran off to infinity in the real line will then converge to ∞ in this compactification. Intuitively, the process can be pictured as follo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Teodor Przymusinski
Teodor is a masculine given name. In English, it is a cognate of Theodore. Notable people with the name include: *Teodor Muzaka III, Albanian nobleman who was born in 1393. * Teodor Andrault de Langeron (19th century), President of Warsaw * Teodor Andrzej Potocki (1664-1738), Polish nobleman * Teodor Anghelini (born 1954), retired Romanian football player and coach * Teodor Anioła (1925-1993), Polish footballer * Teodor Atanasov (born 1987), Bulgarian footballer * Teodor Axentowicz (1859-1938), Polish painter * Teodor Bujnicki (1907-1944), Polish poet * Teodor Calmășul (18th century), Romanian boyar * Teodor Filipović (1778-1807), Serbian lawyer * Teodor Frunzeti (born 1955), Romanian Land Forces general * Teodor Ilić Češljar (1746-1793), Serbian painter * Teodor Ilincăi (born 1983), Romanian opera tenor * Teodor Kazimierz Czartoryski (1704-1768), bishop of Poznań * Teodor Keko (1958-2002), Albanian writer * Teodor Koskenniemi (1887-1965), Finnish athlete * Teodor Kra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elsevier Science
Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', the '' Current Opinion'' series, the online citation database Scopus, the SciVal tool for measuring research performance, the ClinicalKey search engine for clinicians, and the ClinicalPath evidence-based cancer care service. Elsevier's products and services also include digital tools for data management, instruction, research analytics and assessment. Elsevier is part of the RELX Group (known until 2015 as Reed Elsevier), a publicly traded company. According to RELX reports, in 2021 Elsevier published more than 600,000 articles annually in over 2,700 journals; as of 2018 its archives contained over 17 million documents and 40,000 e-books, with over one billion annual downloads. Researchers have criticized Elsevier for its high profit margin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Countable Chain Condition
In order theory, a partially ordered set ''X'' is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in ''X'' is countable. Overview There are really two conditions: the ''upwards'' and ''downwards'' countable chain conditions. These are not equivalent. The countable chain condition means the downwards countable chain condition, in other words no two elements have a common lower bound. This is called the "countable chain condition" rather than the more logical term "countable antichain condition" for historical reasons related to certain chains of open sets in topological spaces and chains in complete Boolean algebras, where chain conditions sometimes happen to be equivalent to antichain conditions. For example, if κ is a cardinal, then in a complete Boolean algebra every antichain has size less than κ if and only if there is no descending κ-sequence of elements, so chain conditions are equivalent to antichain conditions. Partial orders and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pavel Alexandrov
Pavel Sergeyevich Alexandrov (russian: Па́вел Серге́евич Алекса́ндров), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote about three hundred papers, making important contributions to set theory and topology. In topology, the Alexandroff compactification and the Alexandrov topology are named after him. Biography Alexandrov attended Moscow State University where he was a student of Dmitri Egorov and Nikolai Luzin. Together with Pavel Urysohn, he visited the University of Göttingen in 1923 and 1924. After getting his Ph.D. in 1927, he continued to work at Moscow State University and also joined the Steklov Institute of Mathematics. He was made a member of the Russian Academy of Sciences in 1953. Personal life Luzin challenged Alexandrov to determine if the continuum hypothesis is true. This still unsolved problem was too much for Alexandrov and he had a creative crisis at the end of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polyadic Space
In mathematics, a polyadic space is a topological space that is the image under a continuous function of a topological power of an Alexandroff one-point compactification of a discrete space. History Polyadic spaces were first studied by S. Mrówka in 1970 as a generalisation of dyadic spaces. The theory was developed further by R. H. Marty, János Gerlits and Murray G. Bell, the latter of whom introduced the concept of the more general centred spaces. Background A subset ''K'' of a topological space ''X'' is said to be compact if every open cover of ''K'' contains a finite subcover. It is said to be locally compact at a point ''x'' ∈ ''X'' if ''x'' lies in the interior of some compact subset of ''X''. ''X'' is a locally compact space if it is locally compact at every point in the space. A proper subset ''A'' ⊂ ''X'' is said to be dense if the closure ''Ā'' = ''X''. A space whose set has a countable, dense subset is called a separable space. For a non-compact, locally c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]