HOME
*





Disk Laser
A disk laser or active mirror (Fig.1) is a type of diode pumped solid-state laser characterized by a heat sink and laser output that are realized on opposite sides of a thin layer of active gain medium. Despite their name, disk lasers do not have to be circular; other shapes have also been tried. The thickness of the disk is considerably smaller than the laser beam diameter. Initially, this laser cavity configuration had been proposed and realized experimentally for thin slice semiconductor lasers. The disk laser concepts allow very high average and peak powers due to its large area, leading to moderate power densities on the active material. Active mirrors and disk lasers Initially, disk lasers were called ''active mirrors'', because the gain medium of a disk laser is essentially an optical mirror with reflection coefficient greater than unity. An active mirror is a thin disk-shaped double-pass optical amplifier. The first active mirrors were developed in the Laboratory fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LaserDisc
The LaserDisc (LD) is a home video format and the first commercial optical disc storage medium, initially licensed, sold and marketed as DiscoVision, MCA DiscoVision (also known simply as "DiscoVision") in the United States in 1978. Its diameter typically spans . Unlike most optical disc standards, LaserDisc is not fully Digital data, digital, and instead requires the use of analog video signals. Although the format was capable of offering higher-quality video and audio than its consumer rivals—VHS and Betamax videotape—LaserDisc never managed to gain widespread use in North America, largely due to high costs for the players and the inability to record TV programmes. It eventually did gain some traction in that region and became somewhat popular in the 1990s. It was not a popular format in Europe and Australia. By contrast, the format was much more popular in Japan and in the more affluent regions of Southeast Asia, such as Hong Kong, Singapore and Malaysia, and was the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Round-trip Loss
Round-trip gain refers to the laser physics, and laser cavities (or laser resonators). It is gain, integrated along a ray, which makes a round-trip in the cavity. At the continuous-wave operation, the round-trip gain exactly compensates both the output coupling of the cavity and its background loss. Round-trip gain in geometric optics Generally, the Round-trip gain may depend on the frequency, on the position and tilt of the ray, and even on the polarization of light. Usually, we may assume that at some moment of time, at reasonable frequency of operation, the gain ~G(x,y,z)~ is function of the Cartesian coordinates ~x~, ~y~, and ~z~. Then, assuming that the geometrical optics is applicable the round-trip gain ~g~ can be expressed as follows: :~g=\int G(x(a),y(a),z(a))~a~, where ~a~ is path along the ray, parametrized with functions ~x(a)~, ~y(a)~, ~z(a)~; the integration is performed along the whole ray, which is supposed to form the closed loop. In simple models, the flat-to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasi Continuous Wave
Quasi (phonetics 'kwa - zee') is an American indie rock band formed in Portland, Oregon in 1993 by former spouses Sam Coomes (vocals, guitar, rocksichord, various keyboards, bass) and Janet Weiss (vocals and drums). Joanna Bolme performed and recorded with the group as a bassist from 2007 to 2011. History In 1990, Sam Coomes, Janet Weiss, and Brad Pedinov formed the band Motorgoat. The band released two self-released cassettes and one 7" single before dissolving in 1993. Coomes and Weiss then began recording as a duo in 1993 under the name Quasi. They played with various additional musicians in early live appearances, but eventually settled on playing live as a duo as well. They self-recorded and self-released a cassette and a CD in 1993. They recorded ''R&B Transmogrification'' in the Portland band Pond's basement recording studio and released it on Up Records in 1997. They released two more albums with Up: ''Featuring "Birds"'' in 1998 and '' Field Studies'' in 1999; both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fresnel Number
The Fresnel number (''F''), named after the physicist Augustin-Jean Fresnel, is a dimensionless number occurring in optics, in particular in diffraction, scalar diffraction theory. Definition For an electromagnetic wave passing through an aperture and hitting a screen, the Fresnel number ''F'' is defined as : F = \frac where : a is the characteristic size (e.g. radius) of the aperture : L is the distance of the screen from the aperture : \lambda is the incident wavelength. Conceptually, it is the number of half-Periodic function, period zones in the wavefront amplitude, counted from the center to the edge of the aperture, as seen from the observation point (the center of the imaging screen), where a half-period zone is defined so that the wavefront Phase (waves), phase changes by \pi when moving from one half-period zone to the next. An equivalent definition is that the Fresnel number is the difference, expressed in half-wavelengths, between the ''slant'' distance from the obs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical Thickness
In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to ''transmitted'' radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged. In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material, that is the optical depth divided by ln 10. Mathematical definitions Optical depth Op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermal Loading
Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different parts of an object expand by different amounts. This differential expansion can be more directly understood in terms of strain, than in terms of stress, as it is shown in the following. At some point, this stress can exceed the tensile strength of the material, causing a crack to form. If nothing stops this crack from propagating through the material, it will cause the object's structure to fail. Failure due to thermal shock can be prevented by: # Reducing the thermal gradient seen by the object, by changing its temperature more slowly or increasing the material's thermal conductivity # Reducing the material's coefficient of thermal expansion # Increasing its strength # Introducing built-in compressive stress, as for example in tempered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Active Laser Medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by a pump source. Examples of active laser media include: * Certain crystals, typically doped with rare-earth ions (e.g. neodymium, ytterbium, or erbium) or transition metal ions (titanium or chromium); most often yttrium aluminium garnet ( Y3 Al5 O12), yttrium orthovanadate (YVO4), or sapphire (Al2O3); and not often Caesium cadmium bromide ( Cs Cd Br3) (Solid-state lasers) * Glasses, e.g. silicate or phosphate glasses, doped with laser-active ions; * Gases, e.g. mixtures of helium and neon (HeNe), nitrogen, argon, krypton, carbon monoxide, carbon dioxide, or metal vapors; (Gas lasers) * Semiconductors, e.g. gallium arsenide (GaAs), indium gallium arsenide (InGaAs), or gallium nitride (GaN). * Liqui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lasing Threshold
The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above threshold, the slope of power vs. excitation is orders of magnitude greater. The linewidth of the laser's emission also becomes orders of magnitude smaller above the threshold than it is below. Above the threshold, the laser is said to be ''lasing''. The term "lasing" is a back formation from "laser," which is an acronym, not an agent noun. Theory The lasing threshold is reached when the optical gain of the laser medium is exactly balanced by the sum of all the losses experienced by light in one round trip of the laser's optical cavity. This can be expressed, assuming steady-state operation, as :R_1 R_2\exp(2g_\text\,l) \exp(-2\alpha l) = 1. Here R_1 and R_2 are the mirror (power) reflectivities, l is the length of the gain medium, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Round-trip Gain
Round-trip gain refers to the laser physics, and laser cavities (or laser resonators). It is gain, integrated along a ray, which makes a round-trip in the cavity. At the continuous-wave operation, the round-trip gain exactly compensates both the output coupling of the cavity and its background loss. Round-trip gain in geometric optics Generally, the Round-trip gain may depend on the frequency, on the position and tilt of the ray, and even on the polarization of light. Usually, we may assume that at some moment of time, at reasonable frequency of operation, the gain ~G(x,y,z)~ is function of the Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ... ~x~, ~y~, and ~z~. Then, assuming that the geometrical optics is applicable the round-trip gain ~g~ can be expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]