HOME





Dirichlet Function
In mathematics, the Dirichlet function is the indicator function \mathbf_\Q of the set of rational numbers \Q, i.e. \mathbf_\Q(x) = 1 if is a rational number and \mathbf_\Q(x) = 0 if is not a rational number (i.e. is an irrational number). \mathbf 1_\Q(x) = \begin 1 & x \in \Q \\ 0 & x \notin \Q \end It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of a pathological function which provides counterexamples to many situations. Topological properties Periodicity For any real number and any positive rational number , \mathbf_\Q(x + T) = \mathbf_\Q(x). The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of \R. Integration properties See also * Thomae's function, a variation that is discontinuous only at the rational numbers References {{Reflist Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Periodic Function
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a ''cycle''. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function that is not periodic is called ''aperiodic''. Definition A function is said to be periodic if, for some nonzero constant , it is the case that :f(x+P) = f(x) for all values of in the domain. A nonzero constant for which this is the case is called a period of the function. If there exists a least positive constant with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period. A funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomae's Function
Thomae's function is a real-valued function of a real variable that can be defined as: f(x) = \begin \frac &\textx = \tfrac\quad (x \text p \in \mathbb Z \text q \in \mathbb N \text\\ 0 &\textx \text \end It is named after Carl Johannes Thomae, but has many other names: the popcorn function, the raindrop function, the countable cloud function, the modified Dirichlet function, the ruler function (not to be confused with the integer ruler function), the Riemann function, or the Stars over Babylon (John Horton Conway's name). Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. Since every rational number has a unique representation with coprime (also termed relatively prime) p \in \mathbb Z and q \in \mathbb N, the function is well-defined. Note that q = +1 is the only number in \mathbb N that is coprime to p = 0. It is a modification of the Dirichlet function, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Integral
In mathematics, the integral of a non-negative Function (mathematics), function of a single variable can be regarded, in the simplest case, as the area between the Graph of a function, graph of that function and the axis. The Lebesgue integral, named after france, French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions with discontinuities arising in many applications that are pathological from the perspective of the Riemann integral. The Lebesgue integral also has generally better analytical properties. For instance, under mild conditions, it is possible to exchange limits and Lebesgue integration, while the conditions for doing this with a Riemann integral are comparatively baroque. Furthermore, the Lebesgue integral can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enumeration
An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the element (mathematics), elements of a Set (mathematics), set. The precise requirements for an enumeration (for example, whether the set must be finite set, finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... for the set of positive integers), but in other cases it may be necessary to impose a (perhaps arbitrary) ordering. In some contexts, such as enumerative combinatorics, the term ''enumeration'' is used more in the sense of ''counting'' – with emphasis on determination of the number of elements that a set contains, rather than the production of an explicit listing of those elements. Combinatorics In combinatorics, enumeration means cou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monotone Convergence Theorem
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non- increasing, or non- decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers a_1 \le a_2 \le a_3 \le ...\le K converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 \le a_ \le a_ \le \cdots , it says that taking the sum and the supremum can be interchanged. In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darboux Integral
In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on calculus and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral. Moreover, the definition is readily extended to defining Riemann–Stieltjes integration. Darboux integrals are named after their inventor, Gaston Darboux (1842–1917). Definition The definition of the Darboux integral considers upper and lower (Darboux) integrals, which exist for any bounded real-valued function f on the interval ,b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coincides with the standard measure of length, area, or volume. In general, it is also called '-dimensional volume, '-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by \lambda(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negligible Set
In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integral of a measurable function. Negligible sets define several useful concepts that can be applied in various situations, such as truth almost everywhere. In order for these to work, it is generally only necessary that the negligible sets form an ideal; that is, that the empty set be negligible, the union of two negligible sets be negligible, and any subset of a negligible set be negligible. For some purposes, we also need this ideal to be a sigma-ideal, so that countable unions of negligible sets are also negligible. If and are both ideals of subsets of the same set , then one may speak of ''-negligible'' and ''-negligible'' subsets. The opposite of a negligible set is a generic property, which has various forms. Examples Let ''X'' be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Integral
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration. Overview Imagine you have a curve on a graph, and the curve stays above the x-axis between two points, a and b. The area under that curve, from a to b, is what we want to figure out. This area can be described as the set of all points (x, y) on the graph that follow these rules: a ≤ x ≤ b (the x-coordinate is between a and b) and 0 < y < f(x) (the y-coordinate is between 0 and the height of the curve f(x)). Mathematically, this region can be expressed in
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X eith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]