Demlo Number
   HOME
*





Demlo Number
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


11 (number)
11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables. Name "Eleven" derives from the Old English ', which is first attested in Bede's late 9th-century ''Ecclesiastical History of the English People''. It has cognates in every Germanic language (for example, German ), whose Proto-Germanic ancestor has been reconstructed as , from the prefix (adjectival " one") and suffix , of uncertain meaning. It is sometimes compared with the Lithuanian ', though ' is used as the suffix for all numbers from 11 to 19 (analogously to "-teen"). The Old English form has closer cognates in Old Frisian, Saxon, and Norse, whose ancestor has been reconstructed as . This was formerly thought to be derived from Proto-Germanic (" ten"); it is now sometimes connected with or ("left; remaining"), with the implicit meaning that "one is left" after counting to ten.''Oxford English Dic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coprime Integers
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also '' is prime to '' or '' is coprime with ''. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing Standard notations for relatively prime integers and are: and . In their 1989 textbook ''Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed that the notation a\perp b be used to indicate that and are relatively prime and that the term "prime" be used instead of coprime (as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

73 (number)
73 (seventy-three) is the natural number following 72 and preceding 74. In English, it is the smallest natural number with twelve letters in its spelled out name. In mathematics 73 is the 21st prime number, and emirp with 37, the 12th prime number. It is also the eighth twin prime, with 71. It is the largest minimal primitive root in the first primes; in other words, if ''p'' is one of the first one hundred thousand primes, then at least one of the numbers is a primitive root modulo ''p''. 73 is also the smallest factor of the first composite generalized Fermat number in decimal: , and the smallest prime congruent to 1 modulo 24, as well as the only prime repunit in base 8 (1118). It is the fourth star number. Notably, 73 is the sole Sheldon prime to contain both ''mirror'' and ''product'' properties: *73, as an emirp, has 37 as its dual permutable prime, a mirroring of its base ten digits, 7 and 3. 73 is the 21st prime number, while 37 is the 12th, which is a se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutable Prime
A permutable prime, also known as anagrammatic prime, is a prime number which, in a given base, can have its digits' positions switched through any permutation and still be a prime number. H. E. Richert, who is supposedly the first to study these primes, called them permutable primes, but later they were also called absolute primes. In base 10, all the permutable primes with fewer than 49,081 digits are known : 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, R19 (1111111111111111111), R23, R317, R1031, ... Of the above, there are 16 unique permutation sets, with smallest elements :2, 3, 5, 7, R2, 13, 17, 37, 79, 113, 199, 337, R19, R23, R317, R1031, ... Note R''n'' = \tfrac is a repunit, a number consisting only of ''n'' ones (in base 10). Any repunit prime is a permutable prime with the above definition, but some definitions require at least two distinct digits. All permutable primes of two or more digits are comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number Theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function). The first such distribution found is , where is the prime-counting function (the number of primes less than or equal to ''N'') and is the natural logarithm of . This means that for large enough , the probability that a random integer not greater than is prime is very close to . Consequently, a random integer with at most digits (for large enough ) is about half as likely to be prime as a random integer with at most digits. For example, among the positive integers of at most 1000 digits, about one in 2300 is prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Pages
The PrimePages is a website about prime numbers maintained by Chris Caldwell at the University of Tennessee at Martin. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. , the 5,000th prime has around 412,000 digits.. Retrieved on 2018-02-12. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of titanic primes (primes with at least 1000 decimal digits) by Samuel Yates. In subsequent years, the whole top-5,000 has consisted of gigantic primes (primes with at least 10,000 decimal digits). Primes of special forms are kept on the current lists if they are titanic and in the top-20 or top-5 for their form. See also *List of prime numbers This is a list of articles about pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Harvey Dubner
Harvey Dubner (1928–2019) was an electrical engineer and mathematician who lived in New Jersey, noted for his contributions to finding large prime numbers. In 1984, he and his son Robert collaborated in developing the 'Dubner cruncher', a board which used a commercial finite impulse response filter chip to speed up dramatically the multiplication of medium-sized multi-precision numbers, to levels competitive with supercomputers of the time, though his focus later changed to efficient implementation of FFT-based algorithms on personal computers. He found many large prime numbers of special forms: repunits, Fibonacci primes, prime Lucas numbers, twin primes, Sophie Germain primes, Belphegor's prime, and primes in arithmetic progression In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is chairman of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 350,000 sequences, making it the largest database of its kind. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. History Neil Sloane started collecting integer sequences as a graduate student in 1965 to support his work in combinatorics. The database was at first stored on punched cards. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A004023
A, or a, is the first letter and the first vowel of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version can be written in two forms: the double-storey a and single-storey ɑ. The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English grammar, " a", and its variant " an", are indefinite articles. History The earliest certain ancestor of "A" is aleph (also written 'aleph), the first letter of the Phoenician alphabet, which consisted entirely of consonants (for that reason, it is also called an abjad to distinguish it fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotomic Polynomial
In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primitive roots of unity e^ , where ''k'' runs over the positive integers not greater than ''n'' and coprime to ''n'' (and ''i'' is the imaginary unit). In other words, the ''n''th cyclotomic polynomial is equal to : \Phi_n(x) = \prod_\stackrel \left(x-e^\right). It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive ''n''th-root of unity ( e^ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is :\prod_\Phi_d(x) = x^n - 1, showing that is a root of x^n - 1 if and only if it is a ''d''th primitive root of unity for some ''d'' that divides ''n''. Examples If ''n'' is a prim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]