The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of
integer sequence
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.
An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. Fo ...
s. It was created and maintained by
Neil Sloane
__NOTOC__
Neil James Alexander Sloane (born October 10, 1939) is a British-American mathematician. His major contributions are in the fields of combinatorics, error-correcting codes, and sphere packing. Sloane is best known for being the creator ...
while researching at
AT&T Labs. He transferred the
intellectual property
Intellectual property (IP) is a category of property that includes intangible creations of the human intellect. There are many types of intellectual property, and some countries recognize more than others. The best-known types are patents, cop ...
and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is chairman of the OEIS Foundation.
OEIS records information on integer sequences of interest to both professional and
amateur mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
s, and is widely cited. , it contains over 350,000 sequences, making it the largest database of its kind.
Each entry contains the leading terms of the sequence,
keywords, mathematical motivations, literature links, and more, including the option to generate a
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discre ...
or play a
musical
Musical is the adjective of music
Music is generally defined as the The arts, art of arranging sound to create some combination of Musical form, form, harmony, melody, rhythm or otherwise Musical expression, expressive content. Exact def ...
representation of the sequence. The database is
searchable by keyword, by
subsequence, or by any of 16 fields.
History
Neil Sloane
__NOTOC__
Neil James Alexander Sloane (born October 10, 1939) is a British-American mathematician. His major contributions are in the fields of combinatorics, error-correcting codes, and sphere packing. Sloane is best known for being the creator ...
started collecting integer sequences as a graduate student in 1965 to support his work in
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many a ...
. The database was at first stored on
punched card
A punched card (also punch card or punched-card) is a piece of stiff paper that holds digital data represented by the presence or absence of holes in predefined positions. Punched cards were once common in data processing applications or to di ...
s. He published selections from the database in book form twice:
#''A Handbook of Integer Sequences'' (1973, ), containing 2,372 sequences in
lexicographic order and assigned numbers from 1 to 2372.
#''The Encyclopedia of Integer Sequences'' with
Simon Plouffe (1995, ), containing 5,488 sequences and assigned M-numbers from M0000 to M5487. The Encyclopedia includes the references to the corresponding sequences (which may differ in their few initial terms) in ''A Handbook of Integer Sequences'' as N-numbers from N0001 to N2372 (instead of 1 to 2372.) The Encyclopedia includes the A-numbers that are used in the OEIS, whereas the Handbook did not.
These books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an
e-mail
Electronic mail (email or e-mail) is a method of exchanging messages ("mail") between people using electronic devices. Email was thus conceived as the electronic ( digital) version of, or counterpart to, mail, at a time when "mail" mean ...
service (August 1994), and soon after as a website (1996). As a spin-off from the database work, Sloane founded the ''
Journal of Integer Sequences
The ''Journal of Integer Sequences'' is a peer-reviewed open-access academic journal in mathematics, specializing in research papers about integer sequences.
It was founded in 1998 by Neil Sloane. Sloane had previously published two books on in ...
'' in 1998.
The database continues to grow at a rate of some 10,000 entries a year.
Sloane has personally managed 'his' sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database.
In 2004, Sloane celebrated the addition of the 100,000th sequence to the database, , which counts the marks on the
Ishango bone. In 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an
/oeis.org/wiki/ OEIS wikiat
/oeis.org/ OEIS.orgwas created to simplify the collaboration of the OEIS editors and contributors. The 200,000th sequence, , was added to the database in November 2011; it was initially entered as A200715, and moved to A200000 after a week of discussion on the SeqFan mailing list, following a proposal by OEIS Editor-in-Chief
Charles Greathouse to choose a special sequence for A200000. A300000 was defined in February 2018, and by end of July 2020 the database contained more than 336,000 sequences.
Non-integers
Besides integer sequences, the OEIS also catalogs sequences of
fraction
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
s, the digits of
transcendental number
In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and .
Though only a few classe ...
s,
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s and so on by transforming them into integer sequences.
Sequences of fractions are represented by two sequences (named with the keyword 'frac'): the sequence of numerators and the sequence of denominators. For example, the fifth-order
Farey sequence,
, is catalogued as the numerator sequence 1, 1, 1, 2, 1, 3, 2, 3, 4 () and the denominator sequence 5, 4, 3, 5, 2, 5, 3, 4, 5 ().
Important
irrational number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s such as π = 3.1415926535897... are catalogued under representative integer sequences such as
decimal expansions (here 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, ... ()),
binary expansions (here 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, ... ()), or
continued fraction expansions (here 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, ... ()).
Conventions
The OEIS was limited to plain
ASCII
ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because ...
text until 2011, and it still uses a linear form of conventional mathematical notation (such as ''f''(''n'') for
functions, ''n'' for running
variables, etc.).
Greek letters
The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BCE. It is derived from the earlier Phoenician alphabet, and was the earliest known alphabetic script to have distinct letters for vowels as w ...
are usually represented by their full names, ''e.g.'', mu for μ, phi for φ.
Every sequence is identified by the letter A followed by six digits, almost always referred to with leading zeros, ''e.g.'', A000315 rather than A315.
Individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces.
In comments, formulas, etc.,
a(n)
represents the ''n''th term of the sequence.
Special meaning of zero
Zero
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
is often used to represent non-existent sequence elements. For example, enumerates the "smallest
prime
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
of ''n''
2 consecutive primes to form an ''n'' × ''n''
magic square
In recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same. The 'order' of the magic square is the number ...
of least
magic constant, or 0 if no such magic square exists." The value of ''a''(1) (a 1 × 1 magic square) is 2; ''a''(3) is 1480028129. But there is no such 2 × 2 magic square, so ''a''(2) is 0. This special usage has a solid mathematical basis in certain counting functions; for example, the
totient valence function ''N''
φ(''m'') () counts the solutions of φ(''x'') = ''m''. There are 4 solutions for 4, but no solutions for 14, hence ''a''(14) of A014197 is 0—there are no solutions.
Other values are also used, most commonly −1 (see or ).
Lexicographical ordering
The OEIS maintains the
lexicographical order of the sequences, so each sequence has a predecessor and a successor (its "context"). OEIS normalizes the sequences for lexicographical ordering, (usually) ignoring all initial zeros and ones, and also the
sign
A sign is an Physical object, object, quality (philosophy), quality, event, or Non-physical entity, entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to ...
of each element. Sequences of
weight distribution codes often omit periodically recurring zeros.
For example, consider: the
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s, the
palindromic primes, the
Fibonacci sequence
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from ...
, the
lazy caterer's sequence, and the coefficients in the
series expansion
In mathematics, a series expansion is an expansion of a function into a series, or infinite sum. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and divis ...
of
. In OEIS lexicographic order, they are:
* Sequence #1: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...
* Sequence #2: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, ...
* Sequence #3: 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...
* Sequence #4: 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, ...
* Sequence #5: 3, 8, 3, 24, 24, 48, 3, 8, 72, 120, 24, 168, 144, ...
whereas unnormalized lexicographic ordering would order these sequences thus: #3, #5, #4, #1, #2.
Self-referential sequences
Very early in the history of the OEIS, sequences defined in terms of the numbering of sequences in the OEIS itself were proposed. "I resisted adding these sequences for a long time, partly out of a desire to maintain the dignity of the database, and partly because A22 was only known to 11 terms!", Sloane reminisced.
One of the earliest self-referential sequences Sloane accepted into the OEIS was (later ) "''a''(''n'') = ''n''-th term of sequence A
''n'' or –1 if A
''n'' has fewer than ''n'' terms". This sequence spurred progress on finding more terms of .
lists the first term given in sequence A
''n'', but it needs to be updated from time to time because of changing opinions on offsets. Listing instead term ''a''(1) of sequence A
''n'' might seem a good alternative if it weren't for the fact that some sequences have offsets of 2 and greater.
This line of thought leads to the question "Does sequence A
''n'' contain the number ''n''?" and the sequences , "Numbers ''n'' such that OEIS sequence A
''n'' contains ''n''", and , "''n'' is in this sequence
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
''n'' is not in sequence A
''n''". Thus, the
composite number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
2808 is in A053873 because is the sequence of composite numbers, while the non-prime 40 is in A053169 because it's not in , the prime numbers. Each ''n'' is a member of exactly one of these two sequences, and in principle it can be determined ''which'' sequence each ''n'' belongs to, with two exceptions (related to the two sequences themselves):
*It cannot be determined whether 53873 is a member of A053873 or not. If it is in the sequence then by definition it should be; if it is not in the sequence then (again, by definition) it should not be. Nevertheless, either decision would be consistent, and would also resolve the question of whether 53873 is in A053169.
*It can be proved that 53169
both is and is not a member of A053169. If it is in the sequence then by definition it should not be; if it is not in the sequence then (again, by definition) it should be. This is a form of
Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contain ...
. Hence it is also not possible to answer if 53169 is in A053873.
Abridged example of a typical entry
This entry, , was chosen because it contains every field an OEIS entry can have.
A046970 Dirichlet inverse of the Jordan function J_2 (A007434).
1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
OFFSET 1,2
COMMENTS B(n+2) = -B(n)*((n+2)*(n+1)/(4*Pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * Sum_ a(j)/j^(n+2).
Apart from signs also Sum_ core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002
REFERENCES M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48.
LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 lternative scanned copy
P. G. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408.
Paul W. Oxby, A Function Based on Chebyshev Polynomials as an Alternative to the Sinc Function in FIR Filter Design, arXiv:2011.10546 ess.SP 2020.
Wikipedia, Riemann zeta function.
FORMULA Multiplicative with a(p^e) = 1 - p^2.
a(n) = Sum_ mu(d)*d^2.
abs(a(n)) = Product_ (p^2 - 1). - Jon Perry, Aug 24 2010
From Wolfdieter Lang, Jun 16 2011: (Start)
Dirichlet g.f.: zeta(s)/zeta(s-2).
a(n) = J_(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End)
a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011
G.f.: Sum_ mu(k)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
EXAMPLE a(3) = -8 because the divisors of 3 are and mu(1)*1^2 + mu(3)*3^2 = -8.
a(4) = -3 because the divisors of 4 are and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3.
E.g., a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - Jon Perry, Aug 24 2010
G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
MAPLE Jinvk := proc(n, k) local a, f, p ; a := 1 ; for f in ifactors(n) do p := op(1, f) ; a := a*(1-p^k) ; end do: a ; end proc:
A046970 := proc(n) Jinvk(n, 2) ; end proc: # R. J. Mathar, Jul 04 2011
MATHEMATICA muDD _:= MoebiusMu d^2; Table lus @@ muDD[Divisors[n, ">ivisors[n.html" ;"title="lus @@ muDD[Divisors[n">lus @@ muDD[Divisors[n, (Lopez)
Flatten[Table[, (* Jon Perry, Aug 24 2010 *)
a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], (* Michael Somos, Jan 11 2014 *)
a[ n_] := If[ n < 2, Boole[ n 1], Times @@ (1 - #[ ^2 & /@ FactorInteger @ n)] (* Michael Somos, Jan 11 2014 *)
PROG (PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) \\ Benoit Cloitre
(Haskell)
a046970 = product . map ((1 -) . (^ 2)) . a027748_row
-- Reinhard Zumkeller, Jan 19 2012
(PARI) /* Michael Somos, Jan 11 2014 */
CROSSREFS Cf. A007434, A027641, A027642, A063453, A023900.
Cf. A027748.
Sequence in context: A144457 A220138 A146975 * A322360 A058936 A280369
Adjacent sequences: A046967 A046968 A046969 * A046971 A046972 A046973
KEYWORD sign,easy,mult
AUTHOR Douglas Stoll, dougstoll(AT)email.msn.com
EXTENSIONS Corrected and extended by Vladeta Jovovic, Jul 25 2001
Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005
Entry fields
; ID number
: Every sequence in the OEIS has a
serial number, a six-digit positive
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
, prefixed by A (and zero-padded on the left prior to November 2004). The letter "A" stands for "absolute". Numbers are either assigned by the editor(s) or by an A number dispenser, which is handy for when contributors wish to send in multiple related sequences at once and be able to create cross-references. An A number from the dispenser expires a month from issue if not used. But as the following table of arbitrarily selected sequences shows, the rough correspondence holds.
: Even for sequences in the book predecessors to the OEIS, the ID numbers are not the same. The 1973 ''Handbook of Integer Sequences'' contained about 2400 sequences, which were numbered by lexicographic order (the letter N plus four digits, zero-padded where necessary), and the 1995 ''Encyclopedia of Integer Sequences'' contained 5487 sequences, also numbered by lexicographic order (the letter M plus 4 digits, zero-padded where necessary). These old M and N numbers, as applicable, are contained in the ID number field in parentheses after the modern A number.
; Sequence data
: The sequence field lists the numbers themselves, to about 260 characters. More terms of the sequences can be provided in so-called B-files. The sequence field makes no distinction between sequences that are finite but still too long to display and sequences that are infinite. To help make that determination, you need to look at the keywords field for "fini", "full", or "more". To determine to which ''n'' the values given correspond, see the offset field, which gives the ''n'' for the first term given.
; Name
: The name field usually contains the most common name for the sequence, and sometimes also the formula. For example, 1, 8, 27, 64, 125, 216, 343, 512, () is named "The
cubes: a(n) = n^3.".
; Comments
: The comments field is for information about the sequence that does not quite fit in any of the other fields. The comments field often points out interesting relationships between different sequences and less obvious applications for a sequence. For example, Lekraj Beedassy in a comment to A000578 notes that the cube numbers also count the "total number of
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
s resulting from criss-crossing
cevians within a triangle so that two of its sides are each ''n''-partitioned," while Neil Sloane points out the unexpected relationship between
centered hexagonal numbers () and second
Bessel polynomials () in a comment to A003215.
; References
: References to printed documents (books, papers, ...).
; Links
: Links, i.e.
URLs, to online resources. These may be:
:# references to applicable articles in journals
:# links to the index
:# links to text files which hold the sequence terms (in a two column format) over a wider range of indices than held by the main database lines
:# links to images in the local database directories which often provide combinatorial background related to
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
:# others related to computer codes, more extensive tabulations in specific research areas provided by individuals or research groups
; Formula
: Formulae,
recurrences,
generating function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary ser ...
s, etc. for the sequence.
; Example
: Some examples of sequence member values.
; Maple
:
Maple
''Acer'' () is a genus of trees and shrubs commonly known as maples. The genus is placed in the family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated since ht ...
code.
; Mathematica
:
Wolfram Language
The Wolfram Language ( ) is a general multi-paradigm programming language developed by Wolfram Research. It emphasizes symbolic computation, functional programming, and rule-based programming and can employ arbitrary structures and data. It is ...
code.
; Program
: Originally
Maple
''Acer'' () is a genus of trees and shrubs commonly known as maples. The genus is placed in the family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated since ht ...
and
Mathematica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimi ...
were the preferred programs for calculating sequences in the OEIS, and they both have their own field labels. , Mathematica was the most popular choice with 100,000 Mathematica programs followed by 50,000
PARI/GP programs, 35,000 Maple programs, and 45,000 in other languages.
: As for any other part of the record, if there is no name given, the contribution (here: program) was written by the original submitter of the sequence.
; Crossrefs
: Sequence cross-references originated by the original submitter are usually denoted by "
Cf."
: Except for new sequences, the "see also" field also includes information on the lexicographic order of the sequence (its "context") and provides links to sequences with close A numbers (A046967, A046968, A046969, A046971, A046972, A046973, in our example). The following table shows the context of our example sequence, A046970:
; Keyword
: The OEIS has its own standard set of mostly four-letter keywords that characterize each sequence:
:*allocated An A-number which has been set aside for a user but for which the entry has not yet been approved (and perhaps not yet written).
:*base The results of the calculation depend on a specific
positional base. For example, 2, 3, 5, 7, 11, 101, 131, 151, 181 ... are prime numbers regardless of base, but they are
palindromic specifically in base 10. Most of them are not palindromic in binary. Some sequences rate this keyword depending on how they are defined. For example, the
Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17 ...
s 3, 7, 31, 127, 8191, 131071, ... does not rate "base" if defined as "primes of the form 2^n − 1". However, defined as "
repunit primes in binary," the sequence would rate the keyword "base".
:* bref "sequence is too short to do any analysis with", for example, , the number of
isomorphism classes of
associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
non-
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
non-anti-associative
anti-commutative
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped ...
closed
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, an internal binary op ...
s on a
set of order ''n''.
:* changed The sequence is changed in the last two weeks.
:* cofr The sequence represents a
continued fraction, for example the continued fraction expansion of ''e'' () or π ().
:* cons The sequence is a decimal expansion of a
mathematical constant
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Cons ...
, like ''e'' () or π ().
:* core A sequence that is of foundational importance to a branch of mathematics, such as the prime numbers (), the Fibonacci sequence (), etc.
:* dead This keyword used for erroneous sequences that have appeared in papers or books, or for duplicates of existing sequences. For example, is the same as .
:* dumb One of the more subjective keywords, for "unimportant sequences," which may or may not directly relate to mathematics, such as
popular culture
Popular culture (also called mass culture or pop culture) is generally recognized by members of a society as a set of practices, beliefs, artistic output (also known as, popular art or mass art) and objects that are dominant or prevalent in ...
references, arbitrary sequences from Internet puzzles, and sequences related to
numeric keypad
A numeric keypad, number pad, numpad, or ten key,
is the palm-sized, usually-17-key section of a standard computer keyboard, usually on the far right. It provides calculator-style efficiency for entering numbers. The idea of a 10-key nu ...
entries. , "Mix digits of pi and e" is one example of lack of importance, and , "Price is Right wheel" (the sequence of numbers on the
Showcase Showdown
''The Price Is Right'' is a television game show franchise created by Bob Stewart, originally produced by Mark Goodson and Bill Todman; currently it is produced and owned by Fremantle. The franchise centers on television game shows, but also i ...
wheel used in the U.S. game show ''
The Price Is Right
''The Price Is Right'' is a television game show franchise created by Bob Stewart, originally produced by Mark Goodson and Bill Todman; currently it is produced and owned by Fremantle. The franchise centers on television game shows, but also i ...
'') is an example of a non-mathematics-related sequence, kept mainly for trivia purposes.
:* easy The terms of the sequence can be easily calculated. Perhaps the sequence most deserving of this keyword is 1, 2, 3, 4, 5, 6, 7, ... , where each term is 1 more than the previous term. The keyword "easy" is sometimes given to sequences "primes of the form ''f''(''m'')" where ''f''(''m'') is an easily calculated function. (Though even if ''f''(''m'') is easy to calculate for large ''m'', it might be very difficult to determine if ''f''(''m'') is prime).
:* eigen A sequence of
eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denot ...
s.
:* fini The sequence is finite, although it might still contain more terms than can be displayed. For example, the sequence field of shows only about a quarter of all the terms, but a comment notes that the last term is 3888.
:* frac A sequence of either numerators or denominators of a sequence of fractions representing
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s. Any sequence with this keyword ought to be cross-referenced to its matching sequence of numerators or denominators, though this may be dispensed with for sequences of
Egyptian fractions, such as , where the sequence of numerators would be . This keyword should not be used for sequences of continued fractions; cofr should be used instead for that purpose.
:* full The sequence field displays the complete sequence. If a sequence has the keyword "full", it should also have the keyword "fini". One example of a finite sequence given in full is that of the
supersingular primes , of which there are precisely fifteen.
:* hard The terms of the sequence cannot be easily calculated, even with raw number crunching power. This keyword is most often used for sequences corresponding to unsolved problems, such as "How many
''n''-spheres can touch another ''n''-sphere of the same size?" lists the first ten known solutions.
:* hear A sequence with a graph audio deemed to be "particularly interesting and/or beautiful", some examples are collected at th
OEIS site
:* less A "less interesting sequence".
:* look A sequence with a graph visual deemed to be "particularly interesting and/or beautiful". Two examples out of several thousands ar
A331124A347347
:* more More terms of the sequence are wanted. Readers can submit an extension.
:* mult The sequence corresponds to a multiplicative function
In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and
f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime.
An arithmetic function ''f''(''n'') ...
. Term ''a''(1) should be 1, and term ''a''(''mn'') can be calculated by multiplying ''a''(''m'') by ''a''(''n'') if ''m'' and ''n'' are coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equival ...
. For example, in , ''a''(12) = ''a''(3)''a''(4) = −8 × −3.
:* new For sequences that were added in the last couple of weeks, or had a major extension recently. This keyword is not given a checkbox in the Web form for submitting new sequences; Sloane's program adds it by default where applicable.
:* nice Perhaps the most subjective keyword of all, for "exceptionally nice sequences."
:* nonn The sequence consists of nonnegative integers (it may include zeroes). No distinction is made between sequences that consist of nonnegative numbers only because of the chosen offset (e.g., ''n''3, the cubes, which are all nonnegative from ''n'' = 0 forwards) and those that by definition are completely nonnegative (e.g., ''n''2, the squares).
:* obsc The sequence is considered obscure and needs a better definition.
:* recycled When the editors agree that a new proposed sequence is not worth adding to the OEIS, an editor blanks the entry leaving only the keyword line with keyword:recycled. The A-number then becomes available for allocation for another new sequence.
:* sign Some (or all) of the values of the sequence are negative. The entry includes both a Signed field with the signs and a Sequence field consisting of all the values passed through the absolute value function.
:* tabf "An irregular (or funny-shaped) array of numbers made into a sequence by reading it row by row." For example, , "Triangle read by rows giving successive states of cellular automaton
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tess ...
generated by "rule 62."
:* tabl A sequence obtained by reading a geometric arrangement of numbers, such as a triangle or square, row by row. The quintessential example is Pascal's triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, althoug ...
read by rows, .
:* uned The sequence has not been edited but it could be worth including in the OEIS. The sequence may contain computational or typographical errors. Contributors are encouraged to edit these sequences.
:* unkn "Little is known" about the sequence, not even the formula that produces it. For example, , which was presented to the Internet Oracle to ponder.
:* walk "Counts walks (or self-avoiding paths)."
:* word Depends on the words of a specific language. For example, zero, one, two, three, four, five, etc. For example, 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8 ... , "Number of letters in the English name of ''n'', excluding spaces and hyphens."
: Some keywords are mutually exclusive, namely: core and dumb, easy and hard, full and more, less and nice, and nonn and sign.
; Offset
: The offset is the index of the first term given. For some sequences, the offset is obvious. For example, if we list the sequence of square numbers as 0, 1, 4, 9, 16, 25 ..., the offset is 0; while if we list it as 1, 4, 9, 16, 25 ..., the offset is 1. The default offset is 0, and most sequences in the OEIS have offset of either 0 or 1. Sequence , the magic constant for ''n'' × ''n'' magic square
In recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same. The 'order' of the magic square is the number ...
with prime entries (regarding 1 as a prime) with smallest row sums, is an example of a sequence with offset 3, and , "Number of stars of visual magnitude ''n''." is an example of a sequence with offset −1. Sometimes there can be disagreement over what the initial terms of the sequence are, and correspondingly what the offset should be. In the case of the lazy caterer's sequence, the maximum number of pieces you can cut a pancake into with ''n'' cuts, the OEIS gives the sequence as 1, 2, 4, 7, 11, 16, 22, 29, 37, ... , with offset 0, while Mathworld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science ...
gives the sequence as 2, 4, 7, 11, 16, 22, 29, 37, ... (implied offset 1). It can be argued that making no cuts to the pancake is technically a number of cuts, namely ''n'' = 0, but it can also be argued that an uncut pancake is irrelevant to the problem. Although the offset is a required field, some contributors don't bother to check if the default offset of 0 is appropriate to the sequence they are sending in. The internal format actually shows two numbers for the offset. The first is the number described above, while the second represents the index of the first entry (counting from 1) that has an absolute value greater than 1. This second value is used to speed up the process of searching for a sequence. Thus , which starts 1, 1, 1, 2 with the first entry representing ''a''(1) has 1, 4 as the internal value of the offset field.
; Author(s)
: The author(s) of the sequence is (are) the person(s) who submitted the sequence, even if the sequence has been known since ancient times. The name of the submitter(s) is given first name (spelled out in full), middle initial(s) (if applicable) and last name; this in contrast to the way names are written in the reference fields. The e-mail address of the submitter is also given before 2011, with the @ character replaced by "(AT)" with some exceptions such as for associate editors or if an e-mail address does not exist. Now it has been the policy for OEIS not to display e-mail addresses in sequences. For most sequences after A055000, the author field also includes the date the submitter sent in the sequence.
; Extension
: Names of people who extended (added more terms to) the sequence or corrected terms of a sequence, followed by date of extension.
Sloane's gap
In 2009, the OEIS database was used by Philippe Guglielmetti to measure the "importance" of each integer number. The result shown in the plot on the right shows a clear "gap" between two distinct point clouds, the "
uninteresting numbers" (blue dots) and the "interesting" numbers that occur comparatively more often in sequences from the OEIS. It contains essentially prime numbers (red), numbers of the form ''a''
''n'' (green) and
highly composite numbers (yellow). This phenomenon was studied by
Nicolas Gauvrit
Nicolas or Nicolás may refer to:
People Given name
* Nicolas (given name)
Mononym
* Nicolas (footballer, born 1999), Brazilian footballer
* Nicolas (footballer, born 2000), Brazilian footballer
Surname Nicolas
* Dafydd Nicolas (c.1705–17 ...
,
Jean-Paul Delahaye
Jean-Paul Delahaye (born 29 June 1952 in Saint-Mandé Seine) is a French computer scientist and mathematician.
Career
Delahaye has been a professor of computer science at the Lille University of Science and Technology since 1988 and a researcher ...
and Hector Zenil who explained the speed of the two clouds in terms of algorithmic complexity and the gap by social factors based on an artificial preference for sequences of primes,
even numbers, geometric and Fibonacci-type sequences and so on. Sloane's gap was featured on a
Numberphile
''Numberphile'' is an educational YouTube channel featuring videos that explore topics from a variety of fields of mathematics. In the early days of the channel, each video focused on a specific number, but the channel has since expanded its s ...
video in 2013.
See also
*
List of OEIS sequences
Notes
References
*
*
*
*
*
*
Further reading
*
*
*
*
External links
* {{official website, //oeis.org/
Wikiat OEIS
Mathematical databases
*
Encyclopedias of mathematics
Multilingual websites
Mathematical projects
20th-century encyclopedias
21st-century encyclopedias
American online encyclopedias