HOME
*



picture info

73 (number)
73 (seventy-three) is the natural number following 72 and preceding 74. In English, it is the smallest natural number with twelve letters in its spelled out name. In mathematics 73 is the 21st prime number, and emirp with 37, the 12th prime number. It is also the eighth twin prime, with 71. It is the largest minimal primitive root in the first primes; in other words, if ''p'' is one of the first one hundred thousand primes, then at least one of the numbers is a primitive root modulo ''p''. 73 is also the smallest factor of the first composite generalized Fermat number in decimal: , and the smallest prime congruent to 1 modulo 24, as well as the only prime repunit in base 8 (1118). It is the fourth star number. Notably, 73 is the sole Sheldon prime to contain both ''mirror'' and ''product'' properties: *73, as an emirp, has 37 as its dual permutable prime, a mirroring of its base ten digits, 7 and 3. 73 is the 21st prime number, while 37 is the 12th, which is a se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centered Dodecagonal Number
The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers of dots with a constant number of sides. Each side of a polygonal layer contains one more dot than each side in the previous layer; so starting from the second polygonal layer, each layer of a centered ''k''-gonal number contains ''k'' more dots than the previous layer. Examples Each centered ''k''-gonal number in the series is ''k'' times the previous triangular number, plus 1. This can be formalized by the expression \frac +1, where ''n'' is the series rank, starting with 0 for the initial 1. For example, each centered square number in the series is four times the previous triangular number, plus 1. This can be formalized by the expression \frac +1. These series consist of the *centered triangular numbers 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ... (), *centered square numbers 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierpont Prime
In number theory, a Pierpont prime is a prime number of the form 2^u\cdot 3^v + 1\, for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6. The first few Pierpont primes are: It has been conjectured that there are infinitely many Pierpont primes, but this remains unproven. Distribution A Pierpont prime with is of the form 2^u+1, and is therefore a Fermat prime (unless ). If is positive then must also be positive (because 3^v+1 would be an even number greater than 2 and therefore not prime), and therefore the non-Fermat Piermont primes all have the form , when is a posi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sexy Primes
In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and . The term "sexy prime" is a pun stemming from the Latin word for six: . If or (where is the lower prime) is also prime, then the sexy prime is part of a prime triplet. In August 2014 the Polymath group, seeking the proof of the twin prime conjecture, showed that if the generalized Elliott–Halberstam conjecture is proven, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 6 and as such they are either twin, cousin or sexy primes. Primorial ''n''# notation As used in this article, # stands for the product 2 · 3 · 5 · 7 · … of all the primes ≤ . Types of groupings Sexy prime pairs The sexy primes (sequences and in OEIS) below 500 are: :(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lucky Number
In number theory, a lucky number is a natural number in a set which is generated by a certain "sieve". This sieve is similar to the Sieve of Eratosthenes that generates the primes, but it eliminates numbers based on their position in the remaining set, instead of their value (or position in the initial set of natural numbers). The term was introduced in 1956 in a paper by Gardiner, Lazarus, Metropolis and Ulam. They suggest also calling its defining sieve, "the sieve of Josephus Flavius" because of its similarity with the counting-out game in the Josephus problem. Lucky numbers share some properties with primes, such as asymptotic behaviour according to the prime number theorem; also, a version of Goldbach's conjecture has been extended to them. There are infinitely many lucky numbers. Twin lucky numbers and twin primes also appear to occur with similar frequency. However, if ''L''''n'' denotes the ''n''-th lucky number, and ''p''''n'' the ''n''-th prime, then ''L''''n'' > ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today. History The prehistory of arithmetic is limited to a small number of artifacts, which may indicate the conception of addition and subtraction, the best-known being the Ishango bone from central Africa, dating from somewhere between 20,000 and 18,000 BC, although its interpretation is disputed. The earliest written records indicate the Egyptians and Babylonians used all the elementary arithmetic operations: addition, subtraction, multiplication, and division, as early as 2000 BC. These artifacts do not always reveal the specific process used for solving problems, but t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Prime Numbers
This is a list of articles about prime numbers. A prime number (or ''prime'') is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite. The first 1000 prime numbers The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows. . The Goldbach conjecture verification project reports that it has computed all primes below 4×10. That means 95,676,260,903,887,607 primes (nearly 10), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes below a given value) faster than computing the primes. This has been used to c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base Ten
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A ''decimal numeral'' (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , where is an integer, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutable Prime
A permutable prime, also known as anagrammatic prime, is a prime number which, in a given base, can have its digits' positions switched through any permutation and still be a prime number. H. E. Richert, who is supposedly the first to study these primes, called them permutable primes, but later they were also called absolute primes. In base 10, all the permutable primes with fewer than 49,081 digits are known : 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, R19 (1111111111111111111), R23, R317, R1031, ... Of the above, there are 16 unique permutation sets, with smallest elements :2, 3, 5, 7, R2, 13, 17, 37, 79, 113, 199, 337, R19, R23, R317, R1031, ... Note R''n'' = \tfrac is a repunit, a number consisting only of ''n'' ones (in base 10). Any repunit prime is a permutable prime with the above definition, but some definitions require at least two distinct digits. All permutable primes of two or more digits are comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duality (mathematics)
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the dual of is . Such involutions sometimes have fixed points, so that the dual of is itself. For example, Desargues' theorem is self-dual in this sense under the ''standard duality in projective geometry''. In mathematical contexts, ''duality'' has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings, bilinear functions from an object of one type and another object of the second type to some family of scalars. For instance, ''linear algebra duality'' corresponds in this way to bilinear maps from pairs of vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]