De Morgan Algebra
__NOTOC__ In mathematics, a De Morgan algebra (named after Augustus De Morgan, a British mathematician and logician) is a structure ''A'' = (A, ∨, ∧, 0, 1, ¬) such that: * (''A'', ∨, ∧, 0, 1) is a bounded distributive lattice, and * ¬ is a De Morgan involution: ¬(''x'' ∧ ''y'') = ¬''x'' ∨ ¬''y'' and ¬¬''x'' = ''x''. (i.e. an involution that additionally satisfies De Morgan's laws) In a De Morgan algebra, the laws * ¬''x'' ∨ ''x'' = 1 (law of the excluded middle), and * ¬''x'' ∧ ''x'' = 0 ( law of noncontradiction) do not always hold. In the presence of the De Morgan laws, either law implies the other, and an algebra which satisfies them becomes a Boolean algebra. Remark: It follows that ¬(x ∨ y) = ¬x ∧ ¬y, ¬1 = 0 and ¬0 = 1 (e.g. ¬1 = ¬1 ∨ 0 = ¬1 ∨ ¬¬0 = ¬(1 ∧ ¬0) = ¬¬0 = 0). Thus ¬ is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Expression
A regular expression (shortened as regex or regexp), sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory. The concept of regular expressions began in the 1950s, when the American mathematician Stephen Cole Kleene formalized the concept of a regular language. They came into common use with Unix text-processing utilities. Different syntaxes for writing regular expressions have existed since the 1980s, one being the POSIX standard and another, widely used, being the Perl syntax. Regular expressions are used in search engines, in search and replace dialogs of word processors and text editors, in text processing utilities such as sed and AWK, and in lexical analysis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthocomplemented Lattice
In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element ''a'' has a complement, i.e. an element ''b'' satisfying ''a'' ∨ ''b'' = 1 and ''a'' ∧ ''b'' = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval 'c'', ''d'' viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement. An orthocomplemented lattice satisfying a weak form of the modular law is called an orthomodular lattice. In bounded distributive lattices, complements are unique. Every complemented distributive lattice has a unique orthocomplementation and is in fact a Boolean algebra. Definition and basic properties A complemented lattice is a bounded lattice (with least e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ockham Algebras
In mathematics, an Ockham algebra is a bounded distributive lattice L with a dual endomorphism, that is, an operation \sim\colon L \to L satisfying * \sim (x \wedge y) = \sim x \vee \sim y , * \sim(x \vee y) = \sim x \wedge \sim y , * \sim 0 = 1, * \sim 1 = 0. They were introduced by , and were named after William of Ockham by . Ockham algebras form a variety. Examples of Ockham algebras include Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...s, De Morgan algebras, Kleene algebras, and Stone algebras. References * (pd availablefrom GDZ) * * * Algebraic logic * {{algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stone Algebra
In mathematics, a Stone algebra or Stone lattice is a pseudocomplemented distributive lattice ''L'' in which any of the following equivalent statements hold for all x, y \in L: * (x\wedge y)^* = x^*\vee y^*; * (x\vee y)^ = x^\vee y^; * x^* \vee x^ = 1. They were introduced by and named after Marshall Harvey Stone. The set S(L) \stackrel \ is called the skeleton of ''L''. Then ''L'' is a Stone algebra if and only if its skeleton ''S''(''L'') is a sublattice of ''L''. Boolean algebras are Stone algebras, and Stone algebras are Ockham algebras. Examples: * The open-set lattice of an extremally disconnected space is a Stone algebra. * The lattice of positive divisors of a given positive integer is a Stone lattice. See also * De Morgan algebra * Heyting algebra In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary ope ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' called ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic. Heyting algebras are distributive lattices. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudocomplement
In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice ''L'' with bottom element 0, an element ''x'' ∈ ''L'' is said to have a ''pseudocomplement'' if there exists a greatest element x^*\in L with the property that x\wedge x^*=0. More formally, x^* = \max\. The lattice ''L'' itself is called a pseudocomplemented lattice if every element of ''L'' is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a ''p''-algebra. However this latter term may have other meanings in other areas of mathematics. Properties In a ''p''-algebra ''L'', for all x, y \in L: * The map x \mapsto x^* is antitone. In particular, 0^* = 1 and 1^* = 0. * The map x \mapsto x^ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Greatest Element
In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined duality (order theory), dually, that is, it is an element of S that is smaller than every other element of S. Definitions Let (P, \leq) be a preordered set and let S \subseteq P. An element g \in P is said to be if g \in S and if it also satisfies: :s \leq g for all s \in S. By switching the side of the relation that s is on in the above definition, the definition of a least element of S is obtained. Explicitly, an element l \in P is said to be if l \in S and if it also satisfies: :l \leq s for all s \in S. If (P, \leq) is also a partially ordered set then S can have at most one greatest element and it can have at most one least element. Whenever a greatest element of S exists and is unique then this element is called greatest element of S. The terminology ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semilattice
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa. Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order. A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Numbers
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stephen Cole Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory, which subsequently helped to provide the foundations of theoretical computer science. Kleene's work grounds the study of computable functions. A number of mathematical concepts are named after him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene closure), Kleene's recursion theorem and the Kleene fixed-point theorem. He also invented regular expressions in 1951 to describe McCulloch-Pitts neural networks, and made significant contributions to the foundations of mathematical intuitionism. Biography Kleene was awarded a bachelor's degree from Amherst College in 1930. He was awarded a Ph.D. in mathematics from Princeton University in 1934, where his thesis, entitled ''A Theory of Po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Three-valued Logic
In logic, a three-valued logic (also trinary logic, trivalent, ternary, or trilean, sometimes abbreviated 3VL) is any of several many-valued logic systems in which there are three truth values indicating ''true'', ''false'', and some third value. This is contrasted with the more commonly known bivalent logics (such as classical sentential or Boolean logic) which provide only for ''true'' and ''false''. Emil Leon Post is credited with first introducing additional logical truth degrees in his 1921 theory of elementary propositions. The conceptual form and basic ideas of three-valued logic were initially published by Jan Łukasiewicz and Clarence Irving Lewis. These were then re-formulated by Grigore Constantin Moisil in an axiomatic algebraic form, and also extended to ''n''-valued logics in 1945. Pre-discovery Around 1910, Charles Sanders Peirce defined a many-valued logic system. He never published it. In fact, he did not even number the three pages of notes where he defined ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |