Dan Abramovich
Dan Abramovich, born in Haifa, is a mathematician working in the fields of algebraic geometry and arithmetic geometry. As of 2019, he holds the title of L. Herbert Ballou University Professor at Brown University, and he is an Elected Fellow of the American Mathematical Society. Career Abramovich received the bachelor's degree at Tel Aviv University in 1987 and completed the doctorate at Harvard University in 1991 under Joe Harris (''Subvarieties of abelian varieties and of Jacobians of curves''). From 1991 to 1994 he was Moore Instructor at the Massachusetts Institute of Technology. Thereafter he held faculty positions at Boston University from 1994 to 1999 and since 2003 has been Professor at Brown University. Among other topics, he has dealt with birational geometry, the resolution of singularities, subvarieties of Abelian varieties, limits for the torsion of elliptic curves, rational and integer points on algebraic varieties and moduli spaces of vector bundles on curves. To ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oberwolfach
Oberwolfach ( gsw, label= Low Alemannic, Obberwolfä) is a town in the district of Ortenau in Baden-Württemberg, Germany. It is the site of the Oberwolfach Research Institute for Mathematics, or Mathematisches Forschungsinstitut Oberwolfach. Geography Geographical situation The town of Oberwolfach lies between 270 and 948 meters above sea level in the central Schwarzwald (Black Forest) on the river Wolf, a tributary of the Kinzig. Neighbouring localities The district is neighboured by Bad Peterstal-Griesbach to the north, Bad Rippoldsau-Schapbach in Landkreis Freudenstadt to the east, by the towns of Wolfach and Hausach to the south, and by Oberharmersbach Oberharmersbach ( gsw, label= Low Alemannic, Haamerschbach) is a town in the district of Ortenau in Baden-Württemberg in Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second ... to the west. References External links Gemeinde Oberwolfach: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curves
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic curve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Institut Des Hautes études Scientifiques
An institute is an organisational body created for a certain purpose. They are often research organisations (research institutes) created to do research on specific topics, or can also be a professional body. In some countries, institutes can be part of a university or other institutions of higher education, either as a group of departments or an autonomous educational institution without a traditional university status such as a "university institute" (see Institute of Technology). In some countries, such as South Korea and India, private schools are sometimes referred to as institutes, and in Spain, secondary schools are referred to as institutes. Historically, in some countries institutes were educational units imparting vocational training and often incorporating libraries, also known as mechanics' institutes. The word "institute" comes from a Latin word ''institutum'' meaning "facility" or "habit"; from ''instituere'' meaning "build", "create", "raise" or "educate". ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pierre And Marie Curie University
Pierre and Marie Curie University (french: link=no, Université Pierre-et-Marie-Curie, UPMC), also known as Paris 6, was a public university, public research university in Paris, France, from 1971 to 2017. The university was located on the Jussieu Campus in the Latin Quarter of the 5th arrondissement of Paris, France. UPMC merged with Paris-Sorbonne University into a new combined Sorbonne University. It was ranked as the best university in France in medicine and health sciences by ''Times Higher Education'' in 2018. History Paris VI was one of the inheritors of the faculty of Sciences of the University of Paris, which was divided into several universities in 1970 after the student protests of May 1968 events in France, May 1968. In 1971, the five faculties of the former University of Paris (Paris VI as the Faculty of Sciences) were split and then re-formed into thirteen universities by the Edgar Faure, Faure Law. The campus of Paris VI was built in the 1950s and 1960s, on a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Sciences Research Institute
The Simons Laufer Mathematical Sciences Institute (SLMath), formerly the Mathematical Sciences Research Institute (MSRI), is an independent nonprofit mathematical research institution on the University of California campus in Berkeley, California. It is widely regarded as a world leading mathematical center for collaborative research, drawing thousands of leading researchers from around the world each year. The institute was founded in 1982, and its funding sources include the National Science Foundation, private foundations, corporations, and more than 90 universities and institutions. The institute is located at 17 Gauss Way on the Berkeley campus, close to Grizzly Peak in the Berkeley Hills. Because of its contribution to the nation's scientific potential, SLMath's activity is supported by the National Science Foundation and the National Security Agency. Private individuals, foundations, and nearly 100 Academic Sponsor Institutions, including the top mathematics departm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Max Planck Institute For Mathematics
The Max Planck Institute for Mathematics (german: Max-Planck-Institut für Mathematik, MPIM) is a prestigious research institute located in Bonn, Germany. It is named in honor of the German physicist Max Planck and forms part of the Max Planck Society (''Max-Planck-Gesellschaft''), an association of 84 institutes engaging in fundamental research in the arts and the sciences. The MPIM is the only Max Planck institute specializing in pure mathematics. The Institute was founded by Friedrich Hirzebruch in 1980, having emerged from the collaborative research center "Theoretical Mathematics" ( Sonderforschungsbereich "Theoretische Mathematik"). Hirzebruch shaped the institute as its director until his retirement in 1995. Currently, the institute is managed by a board of five directors consisting of Peter Teichner (managing director), Werner Ballmann, Gerd Faltings, Peter Scholze, and Don Zagier. Friedrich Hirzebruch was, and Yuri Manin and Günter Harder are, acting as emeriti. Re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hebrew University Of Jerusalem
The Hebrew University of Jerusalem (HUJI; he, הַאוּנִיבֶרְסִיטָה הַעִבְרִית בִּירוּשָׁלַיִם) is a public research university based in Jerusalem, Israel. Co-founded by Albert Einstein and Dr. Chaim Weizmann in July 1918, the public university officially opened in April 1925. It is the second-oldest Israeli university, having been founded 30 years before the establishment of the State of Israel but six years after the older Technion university. The HUJI has three campuses in Jerusalem and one in Rehovot. The world's largest library for Jewish studies—the National Library of Israel—is located on its Edmond J. Safra campus in the Givat Ram neighbourhood of Jerusalem. The university has five affiliated teaching hospitals (including the Hadassah Medical Center), seven faculties, more than 100 research centers, and 315 academic departments. , one-third of all the doctoral candidates in Israel were studying at the HUJI. Among its first ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ehud Hrushovski
Ehud Hrushovski ( he, אהוד הרושובסקי; born 30 September 1959) is a mathematical logician. He is a Merton Professor of Mathematical Logic at the University of Oxford and a Fellow of Merton College, Oxford. He was also Professor of Mathematics at the Hebrew University of Jerusalem. Early life and education Hrushovski's father, Benjamin Harshav (Hebrew: בנימין הרשב, né Hruszowski; 1928–2015), was a literary theorist, a Yiddish and Hebrew poet and a translator, professor at Yale University and Tel Aviv University in comparative literature. Ehud Hrushovski earned his PhD from the University of California, Berkeley in 1986 under Leo Harrington; his dissertation was titled ''Contributions to Stable Model Theory''. He was a professor of mathematics at the Massachusetts Institute of Technology until 1994, when he became a professor at the Hebrew University of Jerusalem. Hrushovski moved in 2017 to the University of Oxford, where he is the Merton Professor of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
José Felipe Voloch
José Felipe Voloch (born 13 February 1963, in Rio de Janeiro) is a Brazilian mathematician who works on number theory and algebraic geometry and is a professor at Canterbury University. Career Voloch earned his Ph.D. from the University of Cambridge in 1985 under the supervision of John William Scott Cassels. He was a professor at the University of Texas, Austin. Awards He is a member of the Brazilian Academy of Sciences The Brazilian Academy of Sciences ( pt, italic=yes, Academia Brasileira de Ciências or ''ABC'') is the national academy of Brazil. It is headquartered in the city of Rio de Janeiro and was founded on May 3, 1916. Publications It publishes a lar ....Brazilian Academy of Sciences Selected publications *References External links |
|
Algebraic Curves
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Bundles
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moduli Spaces
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme (mathematics), scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus (topology), genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here differ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |