HOME
*





Complete Variety
In mathematics, in particular in algebraic geometry, a complete algebraic variety is an algebraic variety , such that for any variety the projection morphism :X \times Y \to Y is a closed map (i.e. maps closed sets onto closed sets). This can be seen as an analogue of compactness in algebraic geometry: a topological space is compact if and only if the above projection map is closed with respect to topological products. The image of a complete variety is closed and is a complete variety. A closed subvariety of a complete variety is complete. A complex variety is complete if and only if it is compact as a complex-analytic variety. The most common example of a complete variety is a projective variety, but there do exist complete non-projective varieties in dimensions 2 and higher. While any complete nonsingular surface is projective, there exist nonsingular complete varieties in dimension 3 and higher which are not projective. The first examples of non-projective com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hironaka's Example
In geometry, Hironaka's example is a non-Kähler complex manifold that is a deformation of Kähler manifolds found by . Hironaka's example can be used to show that several other plausible statements holding for smooth varieties of dimension at most 2 fail for smooth varieties of dimension at least 3. Hironaka's example Take two smooth curves ''C'' and ''D'' in a smooth projective 3-fold ''P'', intersecting in two points ''c'' and ''d'' that are nodes for the reducible curve C\cup D. For some applications these should be chosen so that there is a fixed-point-free automorphism exchanging the curves ''C'' and ''D'' and also exchanging the points ''c'' and ''d''. Hironaka's example ''V'' is obtained by gluing two quasi-projective varieties V_1 and V_2. Let V_1 be the variety obtained by blowing up P \setminus c along C and then along the strict transform of D, and let V_2 be the variety obtained by blowing up P\setminus d along ''D'' and then along the strict transform of ''C''. Since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fano Variety
In algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety ''X'' whose anticanonical bundle ''K''X* is ample. In this definition, one could assume that ''X'' is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties. Examples * The fundamental example of Fano varieties are the projective spaces: the anticanonical line bundle of P''n'' over a field ''k'' is ''O''(''n''+1), which is very ample (over the complex numbers, its curvature is ''n+1'' times the Fubini–Study symplectic form). * Let ''D'' be a smooth codimension-1 s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theorem Of The Cube
In mathematics, the theorem of the cube is a condition for a line bundle over a product of three complete varieties to be trivial. It was a principle discovered, in the context of linear equivalence, by the Italian school of algebraic geometry. The final version of the theorem of the cube was first published by , who credited it to André Weil. A discussion of the history has been given by . A treatment by means of sheaf cohomology, and description in terms of the Picard functor, was given by . Statement The theorem states that for any complete varieties ''U'', ''V'' and ''W'' over an algebraically closed field, and given points ''u'', ''v'' and ''w'' on them, any invertible sheaf ''L'' which has a trivial restriction to each of ''U''× ''V'' × , ''U''× × ''W'', and × ''V'' × ''W'', is itself trivial. (Mumford p. 55; the result there is slightly stronger, in that one of the varieties need not be complete and can be replaced by a connected scheme.) Special cases O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chow's Lemma
Chow's lemma, named after Wei-Liang Chow, is one of the foundational results in algebraic geometry. It roughly says that a proper morphism is fairly close to being a projective morphism. More precisely, a version of it states the following: :If X is a scheme that is proper over a noetherian base S, then there exists a projective S-scheme X' and a surjective S-morphism f: X' \to X that induces an isomorphism f^(U) \simeq U for some dense open U\subseteq X. Proof The proof here is a standard one. Reduction to the case of X irreducible We can first reduce to the case where X is irreducible. To start, X is noetherian since it is of finite type over a noetherian base. Therefore it has finitely many irreducible components X_i, and we claim that for each X_i there is an irreducible proper S-scheme Y_i so that Y_i\to X has set-theoretic image X_i and is an isomorphism on the open dense subset X_i\setminus \cup_ X_j of X_i. To see this, define Y_i to be the scheme-theoretic image o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Claude Chevalley
Claude Chevalley (; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group. Life His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley née Sabatier, wrote ''The Concise Oxford French Dictionary''. Chevalley graduated from the École Normale Supérieure in 1929, where he studied under Émile Picard. He then spent time at the University of Hamburg, studying under Emil Artin and at the University of Marburg, studying under Helmut Hasse. In Germany, Chevalley discovered Japanese mathematics in the person of Shokichi Iyanaga. Chevalley was awarded a doctorate in 1933 from the University of Paris for a thesis on class field theory. When World War II broke out, Chevalley was at Princeton University. After reporting to the French Embass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valuative Criterion Of Properness
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field ''k'' a complete variety. For example, every projective variety over a field ''k'' is proper over ''k''. A scheme ''X'' of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space ''X''(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism ''f'': ''X'' → ''Y'' of schemes is called universally closed if for every scheme ''Z'' with a morphism ''Z'' → ''Y'', the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ( GAII, 5.4.. One also says that ''X'' is pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme Theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field ''k'' a complete variety. For example, every projective variety over a field ''k'' is proper over ''k''. A scheme ''X'' of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space ''X''(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism ''f'': ''X'' → ''Y'' of schemes is called universally closed if for every scheme ''Z'' with a morphism ''Z'' → ''Y'', the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ( GAII, 5.4.. One also says that ''X'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead '' displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heisuke Hironaka
is a Japanese mathematician who was awarded the Fields Medal in 1970 for his contributions to algebraic geometry. Career Hironaka entered Kyoto University in 1949. After completing his undergraduate studies at Kyoto University, he received his Ph.D. in 1960 from Harvard University while under the direction of Oscar Zariski. Hironaka held teaching positions at Brandeis University from 1960-1963, Columbia University in 1964, and Kyoto University from 1975 to 1988. He was a professor of mathematics at Harvard University from 1968 until becoming ''emeritus'' in 1992 and was a president of Yamaguchi University from 1996 to 2002. Research In 1964, Hironaka proved that singularities of algebraic varieties admit resolutions in characteristic zero. This means that any algebraic variety can be replaced by (more precisely is birationally equivalent to) a similar variety which has no singularities. He also introduced Hironaka's example showing that a deformation of Kähler manifolds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Masayoshi Nagata
Masayoshi Nagata (Japanese: 永田 雅宜 ''Nagata Masayoshi''; February 9, 1927 – August 27, 2008) was a Japanese mathematician, known for his work in the field of commutative algebra. Work Nagata's compactification theorem shows that varieties can be embedded in complete varieties. The Chevalley–Iwahori–Nagata theorem describes the quotient of a variety by a group. In 1959 he introduced a counterexample to the general case of Hilbert's fourteenth problem on invariant theory. His 1962 book on local rings contains several other counterexamples he found, such as a commutative Noetherian ring that is not catenary, and a commutative Noetherian ring of infinite dimension. Nagata's conjecture on curves concerns the minimum degree of a plane curve specified to have given multiplicities at given points; see also Seshadri constant. Nagata's conjecture on automorphisms concerns the existence of wild automorphisms of polynomial algebra In mathematics, especially in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]