Christ–Kiselev Maximal Inequality
   HOME
*





Christ–Kiselev Maximal Inequality
In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.M. Christ, A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179 (2001), no. 2, 409--425. Continuous filtrations A continuous filtration of (M,\mu) is a family of measurable sets \_ such that # A_\alpha\nearrow M, \bigcap_A_\alpha=\emptyset, and \mu(A_\beta\setminus A_\alpha)\alpha (stratific) # \lim_\mu(A_\setminus A_\alpha)=\lim_\mu(A_\alpha\setminus A_)=0 (continuity) For example, \mathbb=M with measure \mu that has no pure points and : A_\alpha:=\begin\,&\alpha>0, \\ \emptyset,&\alpha\le0. \end is a continuous filtration. Continuum version Let 1\le p and suppose T:L^p(M,\mu)\to L^q(N,\nu) is a bounded linear operator for
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Function
Maximal functions appear in many forms in harmonic analysis (an area of mathematics). One of the most important of these is the Hardy–Littlewood maximal function. They play an important role in understanding, for example, the differentiability properties of functions, singular integrals and partial differential equations. They often provide a deeper and more simplified approach to understanding problems in these areas than other methods. The Hardy–Littlewood maximal function In their original paper, G.H. Hardy and J.E. Littlewood explained their maximal inequality in the language of cricket averages. Given a function ''f'' defined on R''n'', the uncentred Hardy–Littlewood maximal function ''Mf'' of ''f'' is defined as :(Mf)(x) = \sup_ \frac \int_B , f, at each ''x'' in R''n''. Here, the supremum is taken over balls ''B'' in R''n'' which contain the point ''x'' and , ''B'', denotes the measure of ''B'' (in this case a multiple of the radius of the ball raised to the powe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtration (mathematics)
In mathematics, a filtration \mathcal is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but not with respect to other operations (say, multiplication) that satisfy only S_i \cdot S_j \subseteq S_, where the index set is the natural numbers; this is by analogy with a graded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Kiselev (mathematician)
Alexander A. Kiselev (born 1969) is an American mathematician, specializing in spectral theory, partial differential equations, and fluid mechanics. Career Alexander Kiselev received his bachelor's degree in 1992 from Saint Petersburg State University and his PhD in 1997 from Caltech under supervision of Barry Simon. In 1997-1998 he was a postdoctoral fellow at the Mathematical Sciences Research Institute, where he co-authored a paper on Christ–Kiselev maximal inequality. Between 1998 and 2002 he was an E. Dickson Instructor and then assistant professor at the University of Chicago where he worked with Peter Constantin on reaction-diffusion equations and fluid mechanics. In 2001, Kiselev solved one of the Simon problems, on existence of imbedded singular continuous spectrum of the Schrödinger operator with slowly decaying potential. He taught at the University of Wisconsin-Madison from 2002 to 2013, as an associate and full professor. He was a member of the Rice Univ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bounded Linear Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Σ-finite Measure
In mathematics, a positive (or signed) measure ''μ'' defined on a ''σ''-algebra Σ of subsets of a set ''X'' is called a finite measure if ''μ''(''X'') is a finite real number (rather than ∞), and a set ''A'' in Σ is of finite measure if ''μ''(''A'') < ∞''.'' The measure ''μ'' is called σ-finite if ''X'' is a of measurable sets with finite measure. A set in a measure space is said to have ''σ''-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite. A different but related notion that should not be confused ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, which will output a function depending on temporal frequency or spatial frequency respectively. That process is also called ''analysis''. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term ''Fourier transform'' refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time. The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude (absolute value) of the complex value represents the amplitude of a constituent complex sinusoid with that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''period''), the number of components, and their amplitudes and phase parameters. With appropriate choices, one cycle (or ''period'') of the summation can be made to approximate an arbitrary function in that interval (or the entire function if it too is periodic). The number of components is theoretically infinite, in which case the other parameters can be chosen to cause the series to converge to almost any ''well behaved'' periodic function (see Pathological and Dirichlet–Jordan test). The components of a particular function are determined by ''analysis'' techniques described in this article. Sometimes the components are known first, and the unknown function is ''synthesized'' by a Fourier series. Such is the case of a discrete-ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inequalities
Inequality may refer to: Economics * Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy * Economic inequality, difference in economic well-being between population groups * Spatial inequality, the unequal distribution of income and resources across geographical regions * Income inequality metrics, used to measure income and economic inequality among participants in a particular economy * International inequality, economic differences between countries Healthcare * Health equity, the study of differences in the quality of health and healthcare across different populations Mathematics * Inequality (mathematics), a relation between two values when they are different Social sciences * Educational inequality, the unequal distribution of academic resources to socially excluded communities * Gender inequality, unequal treatment or perceptions of individuals due to their gender * Participation inequality, the pheno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]