HOME





Christ–Kiselev Maximal Inequality
In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.M. Christ, A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179 (2001), no. 2, 409--425. Continuous filtrations A continuous filtration of (M,\mu) is a family of measurable sets \_ such that # A_\alpha\nearrow M, \bigcap_A_\alpha=\emptyset, and \mu(A_\beta\setminus A_\alpha)\alpha (stratific) # \lim_\mu(A_\setminus A_\alpha)=\lim_\mu(A_\alpha\setminus A_)=0 (continuity) For example, \mathbb=M with measure \mu that has no pure points and : A_\alpha:=\begin\,&\alpha>0, \\ \emptyset,&\alpha\le0. \end is a continuous filtration. Continuum version Let 1\le p and suppose T:L^p(M,\mu)\to L^q(N,\nu) is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Function
Maximal functions appear in many forms in harmonic analysis (an area of mathematics). One of the most important of these is the Hardy–Littlewood maximal function. They play an important role in understanding, for example, the differentiability properties of functions, singular integrals and partial differential equations. They often provide a deeper and more simplified approach to understanding problems in these areas than other methods. The Hardy–Littlewood maximal function In their original paper, G.H. Hardy and J.E. Littlewood explained their maximal inequality in the language of cricket averages. Given a function ''f'' defined on R''n'', the uncentred Hardy–Littlewood maximal function ''Mf'' of ''f'' is defined as :(Mf)(x) = \sup_ \frac \int_B , f, at each ''x'' in R''n''. Here, the supremum is taken over balls ''B'' in R''n'' which contain the point ''x'' and , ''B'', denotes the measure of ''B'' (in this case a multiple of the radius of the ball raised to the pow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtration (mathematics)
In mathematics, a filtration \mathcal is, informally, like a set of ever larger Russian dolls, each one containing the previous ones, where a "doll" is a subobject of an algebraic structure. Formally, a filtration is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Kiselev (mathematician)
Alexander A. Kiselev (born 1969) is an American mathematician, specializing in spectral theory, partial differential equations, and fluid mechanics. Career Alexander Kiselev received his bachelor's degree in 1992 from Saint Petersburg State University and his PhD in 1997 from Caltech under supervision of Barry Simon. In 1997-1998 he was a postdoctoral fellow at the Mathematical Sciences Research Institute, where he co-authored a paper on Christ–Kiselev maximal inequality. Between 1998 and 2002 he was an E. Dickson Instructor and then assistant professor at the University of Chicago where he worked with Peter Constantin on reaction-diffusion equations and fluid mechanics. In 2001, Kiselev solved one of the Simon problems, on existence of imbedded singular continuous spectrum of the Schrödinger operator with slowly decaying potential. He taught at the University of Wisconsin-Madison from 2002 to 2013, as an associate and full professor. He was a member of the Rice Univers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bounded Linear Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A linear operator between normed spaces is continuous if and only if it is bounded. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always Convergent series, converge. Well-behaved functions, for example Smoothness, smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inequalities (mathematics)
Inequality may refer to: * Inequality (mathematics), a relation between two quantities when they are different. * Economic inequality, difference in economic well-being between population groups ** Income inequality, an unequal distribution of income ** Wealth inequality, an unequal distribution of wealth ** Spatial inequality, the unequal distribution of income and resources across geographical regions ** International inequality, economic differences between countries * Social inequality, unequal opportunities and rewards for different social positions or statuses within a group ** Gender inequality, unequal treatment or perceptions due to gender ** Racial inequality, social distinctions between racial and ethnic groups within a society * Health inequality, differences in the quality of health and healthcare across populations * Educational inequality, the unequal distribution of academic resources * Environmental inequality, unequal environmental harms between differe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]