Carlson Symmetric Form
   HOME
*





Carlson Symmetric Form
In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa. The Carlson elliptic integrals are: R_F(x,y,z) = \tfrac\int_0^\infty \frac R_J(x,y,z,p) = \tfrac\int_0^\infty \frac R_C(x,y) = R_F(x,y,y) = \tfrac \int_0^\infty \frac R_D(x,y,z) = R_J(x,y,z,z) = \tfrac \int_0^\infty \frac Since R_C and R_D are special cases of R_F and R_J, all elliptic integrals can ultimately be evaluated in terms of just R_F and R_J. The term ''symmetric'' refers to the fact that in contrast to the Legendre forms, these functions are unchanged by the exchange of certain subsets of their arguments. The value of R_F(x,y,z) is the same for any permutation of its arguments, and the value of R_J(x,y,z,p) is the same for any permutation of its first three arguments. The Carlson elliptic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \left(t, \sqrt \right) \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendre Form
In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Adrien-Marie Legendre, Legendre chose the name ''elliptic integrals'' because the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity (mathematics), eccentricity \scriptstyle (the ellipse being defined parametrically by \scriptstyle, \scriptstyle). In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the Carlson symmetric forms. A more detailed treatment of the Legendre forms is given in the main article on elliptic integrals. Definition The incomplete elliptic integral of the first kind is defined as, :F(\phi,k) = \int_0^\phi \frac dt, the second kind as :E(\phi,k) = \int_0^\phi \sqrt\,dt, and the third kind as :\Pi(\phi,n,k) = \int_0^\phi \frac\,dt. The argument ''n'' of the third kind of integral is known as the characteristic, which in different notat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor Series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Symmetric Polynomial
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree in variables for each positive integer , and it is formed by adding together all distinct products of distinct variables. Definition The elementary symmetric polynomials in variables , written for , are defined by :\begin e_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j,\\ e_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k,\\ e_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l,\\ \end and so forth, ending with : e_n (X_1, X_2, \dots,X_n) = X_1 X_2 \cdots X_n. In general, for we define : e_k (X_1 , \ldots , X_n )=\sum_ X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Branch Point
In the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that if the function is n-valued (has n values) at that point, all of its neighborhoods contain a point that has more than n values. Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept. Branch points fall into three broad categories: algebraic branch points, transcendental branch points, and logarithmic branch points. Algebraic branch points most commonly arise from functions in which there is an ambiguity in the extraction of a root, such as solving the equation ''w''2  = ''z'' for ''w'' as a function of ''z''. Here the branch point is the origin, because the analytic continuation of any solution around a closed loop containing the origin will result in a different function: there is non-trivial monodromy. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Pole
In complex analysis (a branch of mathematics), a pole is a certain type of singularity (mathematics), singularity of a complex-valued function of a complex number, complex variable. In some sense, it is the simplest type of singularity. Technically, a point is a pole of a function if it is a zero of a function, zero of the function and is holomorphic function, holomorphic in some neighbourhood (mathematics), neighbourhood of (that is, complex differentiable in a neighbourhood of ). A function is meromorphic function, meromorphic in an open set if for every point of there is a neighborhood of in which either or is holomorphic. If is meromorphic in , then a zero of is a pole of , and a pole of is a zero of . This induces a duality between ''zeros'' and ''poles'', that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicity (mathematics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cauchy Principal Value
In mathematics, the Cauchy principal value, named after Augustin Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. Formulation Depending on the type of singularity in the integrand , the Cauchy principal value is defined according to the following rules: In some cases it is necessary to deal simultaneously with singularities both at a finite number and at infinity. This is usually done by a limit of the form \lim_\, \lim_ \,\left ,\int_^ f(x)\,\mathrmx \,~ + ~ \int_^ f(x)\,\mathrmx \,\right In those cases where the integral may be split into two independent, finite limits, \lim_ \, \left, \,\int_a^ f(x)\,\mathrmx \,\\; < \;\infty and \lim_\;\left, \,\int_^c f(x)\,\mathrmx \,\ \; < \; \infty , then the function is integrable in the ordinary sense. The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SLATEC
SLATEC Common Mathematical Library is a FORTRAN 77 library of over 1400 general purpose mathematical and statistical routines. The code was developed at US Government research laboratories and is therefore public domain software. "SLATEC" is an acronym for the Sandia, Los Alamos, Air Force Weapons Laboratory Technical Exchange Committee, an organization formed in 1974 to foster the exchange of technical information between the computer centers of three US government laboratories. Project history and current status In 1977, the SLATEC Common Mathematical Library (CML) Subcommittee decided to construct a library of FORTRAN subprograms to provide portable, non-proprietary, mathematical software that could be used on a variety of computers, including supercomputers, at the three sites. The computers centers of the Lawrence Livermore National Laboratory, the National Bureau of Standards and the Oak Ridge National Laboratory also participated from 1980–81 onwards. The main r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]