C0 Semigroup
   HOME
*





C0 Semigroup
In mathematics, a ''C''0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations. Formally, a strongly continuous semigroup is a representation of the semigroup (R+,+) on some Banach space ''X'' that is continuous in the strong operator topology. Thus, strictly speaking, a strongly continuous semigroup is not a semigroup, but rather a continuous representation of a very particular semigroup. Formal definition A strongly continuous semigroup on a Banach space X is a map T : \mathbb_+ \to L(X) such that # T(0) = I ,   (identity operator on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Problem
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the domain. A Cauchy problem can be an initial value problem or a boundary value problem (for this case see also Cauchy boundary condition). It is named after Augustin-Louis Cauchy. Formal statement For a partial differential equation defined on R''n+1'' and a smooth manifold ''S'' ⊂ R''n+1'' of dimension ''n'' (''S'' is called the Cauchy surface), the Cauchy problem consists of finding the unknown functions u_1,\dots,u_N of the differential equation with respect to the independent variables t,x_1,\dots,x_n that satisfiesPetrovskii, I. G. (1954). Lectures on partial differential equations. Interscience Publishers, Inc, Translated by A. Shenitzer, (Dover publications, 1991) \begin&\frac = F_i\left(t,x_1,\dots,x_n,u_1,\dots,u_N,\dots,\frac,\dots\right) \\ &\text i,j = 1,2,\dots,N;\, k_0+k_1+\dots+k_n=k\leq n_j;\, k_0
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum. It thereby became a mapping of a range of magnitudes (wavelengths) to a range of qualities, which are the perceived "colors of the rainbow" and other properties which correspond to wavelengths that lie outside of the visible light spectrum. Spectrum has since been applied by analogy to topics outside optics. Thus, one might talk about the " spectrum of political opinion", or the "spectrum of activity" of a drug, or the "autism spectrum". In these uses, values within a spectrum may not be associated with precisely quantifiable numbers or definitions. Such uses imply a broad range of condition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy Space
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the ''Lp'' spaces of functional analysis. For 1 ≤ ''p'' < ∞ these real Hardy spaces ''Hp'' are certain s of ''Lp'', while for ''p'' < 1 the ''Lp'' spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on

Resolvent Operator
In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional. Given an operator , the resolvent may be defined as : R(z;A)= (A-zI)^~. Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series. The resolvent of can be used to directly obtain information about the spectral decomposition of . For example, suppose is an isolated eigenvalue in the spectrum of . That is, suppose there exists a simple closed curve C_\lambda in the complex plane that separates from the rest of the spectrum of . Then the residue : -\frac \oint ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spectral Radius
In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by . Definition Matrices Let be the eigenvalues of a matrix . The spectral radius of is defined as :\rho(A) = \max \left \. The spectral radius can be thought of as an infimum of all norms of a matrix. Indeed, on the one hand, \rho(A) \leqslant \, A\, for every natural matrix norm \, \cdot\, ; and on the other hand, Gelfand's formula states that \rho(A) = \lim_ \, A^k\, ^ . Both of these results are shown below. However, the spectral radius does not necessarily satisfy \, A\mathbf\, \leqslant \rho(A) \, \mathbf\, for arbitrary vectors \mathbf \in \mathbb^n . To see why, let r > 1 be arbitrary and consider the matrix : C_r = \begin 0 & r^ \\ r & 0 \end . The characteristic polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Operator Topology
In the mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ... field of functional analysis there are several standard topology, topologies which are given to the algebra of bounded linear operators on a Banach space . Introduction Let (T_n)_ be a sequence of linear operators on the Banach space . Consider the statement that (T_n)_ converges to some operator on . This could have several different meanings: * If \, T_n - T\, \to 0, that is, the operator norm of T_n - T (the supremum of \, T_n x - T x \, _X, where ranges over the unit ball in ) converges to 0, we say that T_n \to T in the uniform operator topology. * If T_n x \to Tx for all x \in X, then we say T_n \to T in the strong operator topology. * Finally, suppose that for all we have T_n x \to Tx in the weak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved quest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in this a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lumer–Phillips Theorem
In mathematics, the Lumer–Phillips theorem, named after Günter Lumer and Ralph Phillips, is a result in the theory of strongly continuous semigroups that gives a necessary and sufficient condition for a linear operator in a Banach space to generate a contraction semigroup. Statement of the theorem Let ''A'' be a linear operator defined on a linear subspace ''D''(''A'') of the Banach space ''X''. Then ''A'' generates a contraction semigroup if and only if # ''D''(''A'') is dense in ''X'', # ''A'' is closed, # ''A'' is dissipative, and # ''A'' − ''λ''0''I'' is surjective for some ''λ''0> 0, where ''I'' denotes the identity operator. An operator satisfying the last two conditions is called maximally dissipative. Variants of the theorem Reflexive spaces Let ''A'' be a linear operator defined on a linear subspace ''D''(''A'') of the reflexive Banach space ''X''. Then ''A'' generates a contraction semigroup if and only if # ''A'' is dissipative, and # ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hille–Yosida Theorem
In functional analysis, the Hille–Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. It is sometimes stated for the special case of contraction semigroups, with the general case being called the Feller–Miyadera–Phillips theorem (after William Feller, Isao Miyadera, and Ralph Phillips). The contraction semigroup case is widely used in the theory of Markov processes. In other scenarios, the closely related Lumer–Phillips theorem is often more useful in determining whether a given operator generates a strongly continuous contraction semigroup. The theorem is named after the mathematicians Einar Hille and Kōsaku Yosida who independently discovered the result around 1948. Formal definitions If ''X'' is a Banach space, a one-parameter semigroup of operators on ''X'' is a family of operators indexed on the non-negative real numbers ''t ∈ [0, ∞)'' such that * T(0)= I \quad * T(s+t)= T(s) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]